
LECTURE 27
Theory and Design of PL (CS 538)

April 29, 2020

Safe and Unsafe Rust

PLEASE COMPLETE
COURSE EVALS!

AGENDA

CREDITS: MARK MANSI
Developed �rst version of these slides
Graduate student in our department
Active in Rust development

If you want to know more, talk to Mark!

FOUNDATIONS
What does Rust actually guarantee?
Introducing unsafe
Unsafety and Invariants
Using Abstraction

GETTING STARTED WITH UNSAFE RUST
Working with raw pointers
Allocating and deallocating memory
Links to further reading

WHAT DOES RUST
GUARANTEE?

GOAL: FEW BUGS, FASTER PROGRAMS
Avoid doing non-sensical or wrong things…
… and �nd out when we do.
Enable compiler optimizations.

LANGUAGE SPEC
De�nes allowed, disallowed, and unspeci�ed behaviors.

Examples of disallowed:
dereference null pointer

have a bool that is not true or false
access array out of bounds

Examples of unspeci�ed:
In C/C++: a = f(b) + g(c)
which is �rst: f or g?

UNDEFINED BEHAVIOR (UB)
there are on the behavior

of the program.
no restrictions

Compilers are not required to diagnose
unde�ned behavior (although many

simple situations are diagnosed),

and the compiled program is not required
to do anything meaningful.

https://en.cppreference.com/w/cpp/language/ub

IMPLICATIONS OF UB
Correct programs don’t invoke UB
UB can be hard to debug
Compilers can assume no UB when optimizing

EXAMPLE FROM C++

ISO C++ forbids mutating string literals (ISO C++
§2.13.4p2)

char *p = "I'm a string literal";
p[3] = 'x';

EXAMPLE FROM C++

Deferencing an invalid pointer is forbidden (ISO C
§6.5.3.2p4)

char *p = nullptr;
p[3] = 'x'; // Program is allowed to eat laundry here

SAFETY IN RUST

Memory safety
e.g. accesses are to valid values only
e.g. prohibiting mutable aliasing pointers

Thread safety
e.g. mutable aliasing state

 by

“Safety” means no UB

Enforced type system

https://doc.rust-lang.org/nomicon/what-unsafe-does.html
https://dl.acm.org/citation.cfm?id=3158154
https://www.ralfj.de/blog/2017/07/17/types-as-contracts.html
https://www.ralfj.de/blog/2018/07/24/pointers-and-bytes.html

NO UB IN SAFE RUST
let x = Vec::new(); // Empty Vec
println!("Out of bounds: {}", x[2]); // Panic, not UB!

fn foo() -> &usize {
 let x = 3;
 &x // Return reference to stack variable (allowed in C)

 // Doesn't compile (borrow checker error), not UB!
}

Dereferencing null, dangling, or unaligned pointers
Reading uninitialized memory
Breaking the pointer aliasing rules
Producing invalid primitive values:

dangling/null references
null fn pointers

a bool that isn’t true or false

UB IN (UNSAFE) RUST

https://doc.rust-lang.org/nomicon/what-unsafe-does.html

Producing invalid primitive values:
an unde�ned enum discriminant
a char outside the ranges [0x0, 0xD7FF] and

[0xE000, 0x10FFFF]
A non-utf8 str

Unwinding into another language
Causing a data race

MORE UB IN (UNSAFE) RUST

https://doc.rust-lang.org/nomicon/what-unsafe-does.html

WHAT DOES RUST NOT
GUARANTEE?

EXAMPLE
struct Foo(Option<Arc<Mutex<Foo>>>);

impl Drop for Foo {
 /// Implement a destructor for `Foo`
 fn drop(&mut self) {
 // <do some clean up>
 }
}

EXAMPLE (CONTINUED)
fn do_the_foo_thing() {
 let foo1 = Arc::new(Mutex::new(Foo(None)));
 let foo2 = Arc::new(Mutex::new(Foo(None)));

 // Reference cycle
 foo1.lock().unwrap().0 = Some(Arc::clone(&foo2));
 foo2.lock().unwrap().0 = Some(Arc::clone(&foo1));

 // `foo1` and `foo2` are never dropped!
 // Memory never freed. Foo::drop never called. No UB!
}

SAFE RUST CAN STILL…
Panic (“graceful” crashing)
Deadlock (two threads both waiting for each other)
Leak of memory and other resources (never freed
back to the system)
Exit without calling destructors (never clean up)
Integer over�ow (MAX_INT + 1)

A DILEMMA

EXAMPLE
In my program (Rust):

In libc (C):

/// Read from file `fd` into buffer `buf`.
fn read_file(fd: i32, buf: &mut [u8]) {
 let len = buf.len();
 libc::read(fd, buf.as_mut_ptr(), len);
}

ssize_t read(int fd, void *buf, size_t count) {
 // oops bug accidentally overflows `buf`
}

RESTORING SAFETY

Ok, but how do we call C libraries or the OS?

Compiler error: no unsafe C from safe Rust!

/// Read from the file descriptor into the buffer.
fn read_file(fd: i32, buf: &mut [u8]) {
 let len = buf.len();
 libc::read(fd, buf.as_mut_ptr(), len); // Compile error!
}

https://doc.rust-lang.org/reference/unsafety.html

unsafe
Sometimes need to do something potentially unsafe

system calls
calls to C/C++ libraries
interacting with hardware
writing assembly code
…

Compiler can’t check these: Be careful!

EXAMPLE
/// Read from the file descriptor into the buffer.
fn read_file(fd: i32, buf: &mut [u8]) {
 let len = buf.len();
 unsafe {
 libc::read(fd, buf.as_mut_ptr(), len);
 }
}

Rust compiles, but C code may do
something bad: Be careful!

WHAT DOES
unsafe MEAN?

“AUDIT unsafe BLOCKS”
From libstd . Consider :Vec set_len

pub struct Vec<T> {
 buf: RawVec<T>,
 len: usize,
}

impl Vec {
 /// Sets the length of the vector to `new_len`.
 pub fn set_len(&mut self, new_len: usize) {
 self.len = new_len;
 }
}

https://github.com/rust-lang/rust/blob/master/src/liballoc/vec.rs#L292
https://github.com/rust-lang/rust/blob/master/src/liballoc/vec.rs#L818

“AUDIT unsafe BLOCKS”

Huh?!?

fn main() {
 let mut my_vec = Vec::with_capacity(0); // empty vector
 my_vec.set_len(100);

 my_vec[30] = 0; // UB!
}

UB in safe Rust? How?

https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html

unsafe fn

Can only be called in an unsafe block!

But why is it possible in the �rst place?

impl Vec {
 /// Sets the length of the vector to `new_len`.
 pub unsafe fn set_len(&mut self, new_len: usize) {
 self.len = new_len;
 }
}

UB AND INVARIANTS
Language Invariant: something assumed by Rust

breaking a language invariant is (by de�nition) UB
e.g. bool is always true or false
e.g. all references are valid to dereference

UB AND INVARIANTS
: something that is always true

according to the program spec
e.g. the server must write results to the log before
responding to the client

In the presence of unsafe, breaking

 can break lang. invariants, leading to

Program Invariant

program

invariants UB

https://internals.rust-lang.org/t/what-does-unsafe-mean/6696
https://internals.rust-lang.org/t/what-does-unsafe-mean/6696
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html

UB AND INVARIANTS
pub struct Vec<T> {
 buf: RawVec<T>, // `unsafe` in `RawVec`
 len: usize,
}

UB AND INVARIANTS
unsafe: someone promises to !

“Promise” is called a proof obligation.

uphold invariants

https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html

UB AND INVARIANTS
fn read_file(fd: i32, buf: &mut [u8]) {
 let len = buf.len();

 // `read_file` promises to respect buffer length
 unsafe {
 libc::read(fd, buf.as_mut_ptr(), len);
 }
}

// Caller of `set_len` promises to uphold `Vec` invariants!
pub unsafe fn set_len(&mut self, new_len: usize) {
 self.len = new_len;
}

unsafe { ... } blocks

Enclosing function is responsible
unsafe fn

Caller responsible when calling function
Impl. responsible when calling other unsafe

unsafe trait and unsafe impl
Implementor is responsible

DIFFERENT USES OF unsafe
Whose job to check?

https://internals.rust-lang.org/t/what-does-unsafe-mean/6696
https://internals.rust-lang.org/t/pre-rfc-another-take-at-clarifying-unsafe-semantics/7041

HOW TO PLAY WITH
FIRE 🔥

SAFE ABSTRACTIONS
Idea:

Users of the abstraction have no way to cause UB
Language features make unsafe parts inaccessible

Private struct/enum �elds
Private modules/types

Use unsafe to expose dangerous interfaces

Can reason about correctness modularly

Abstraction hides unsafe

http://smallcultfollowing.com/babysteps/blog/2016/09/12/thoughts-on-trusting-types-and-unsafe-code/

EXAMPLE: Vec
Using only safe methods of Vec, it is impossible to cause

UB, even though Vec uses unsafe internally.

The safe methods of Vec all uphold invariants.

Methods that could violate invariants are unsafe
(e.g. set_len)

EXAMPLE: READING FILES

File, BufReader are safe abstractions that uphold

invariants about �les, memory, etc.

fn main() -> std::io::Result<()> {
 // Open: call libc and OS. Safely!
 let file = File::open("foo.txt")?;
 let mut buf_reader = BufReader::new(file);
 let mut contents = String::new();
 // Read: call libc and OS. Safely!
 buf_reader.read_to_string(&mut contents)?;
 assert_eq!(contents, "Hello, world!");
 Ok(())

 // Close: call libc and OS. Safely!
}

CAUTION: FIRE IS HOT

RUST HAS LOTS OF INVARIANTS
Variance
Rust ABI
Memory layout of types

Zero-sized types, uninhabited types
#[repr(C)] and #[repr(packed)]

Type-based optimizations
Reordering, memory coherence, and
Many more in the

optimizations
Rustonomicon

https://www.ralfj.de/blog/2017/07/14/undefined-behavior.html
https://doc.rust-lang.org/nomicon

PRACTICAL FIRE
TWIRLING 101

EXAMPLE: Vec
Caution: will ignore lots of concerns
Can �nd real implementation on GitHub

https://github.com/rust-lang/rust/tree/master/src/liballoc

FIRST: RAW POINTERS
*const T and *mut T

Like C pointers
Not borrow checked, unsafe to dereference

Utilities in std::ptr
Helpful tools in libstd
NonNull

impl Vec
pub struct Vec<T> {
 buf: RawVec<T>,
 len: usize,
}

pub struct RawVec<T> {
 ptr: *mut T, // ptr to allocated space
 cap: usize, // amount of allocated space
}

impl Vec
pub fn new() -> Vec<T> {
 Vec {
 buf: RawVec::new(), // initially, no allocation
 len: 0,
 }
}

impl RawVec
pub fn new() -> Self {
 RawVec {
 ptr: ptr::null_mut(), // null ptr, safe to construct
 cap: 0,
 }
}

impl Vec
pub fn pop(&mut self) -> Option<T> {
 if self.len == 0 {
 None // empty vector
 } else {
 unsafe {
 self.len -= 1; // decrement length
 let addr = self.buf.ptr.offset(self.len);

 // raw ptr read at index `val`
 let val = ptr::read(addr);

 Some(val)
 }
 }
}

impl Vec
pub fn push(&mut self, value: T) {
 // Are we out of space?
 if self.len == self.buf.cap {
 self.buf.double(); // alloc more space
 }

 // put the element in the `Vec`
 unsafe {
 // compute address of end of buffer
 let end = self.buf.ptr.offset(self.len);
 ptr::write(end, value); // write data to raw pointer
 self.len += 1; // increase length
 }
}

impl RawVec
pub fn double(&mut self) {
 unsafe {
 let new_cap = self.cap * 2 + 1; // new capacity

 // alloc more memory with system heap allocator
 let res = if self.cap > 0 {
 heap::realloc(NonNull::from(self.ptr).cast(),
 self.cap, new_cap)
 } else {
 heap::alloc(new_cap)
 };
 // ...
 }
}

impl RawVec
pub fn double(&mut self) {
 unsafe {
 // ...
 match res {
 Ok(new_ptr) => { // update pointer and capacity
 self.ptr = new_ptr.cast().into();
 self.cap = new_cap;
 }
 Err(AllocErr) => { // handle out of memory
 out_of_memory();
 }
 }
 }
}

OTHER unsafe TOOLS
Type memory layout: #[repr(...)]
Mixed-language projects

extern fn

Strings, variadic fns (e.g. printf), extern types

rust-bindgen

cbindgen

https://github.com/rust-lang/rust-bindgen
https://github.com/eqrion/cbindgen

EXTRA RESOURCES

Alexis Beingessner

The Rustonomicon

Ralf Jung’s Blog

Notes on Type Layouts and ABI
Only in Rust
The Kinds of Implementation-De�ned

https://doc.rust-lang.org/stable/nomicon/
https://www.ralfj.de/blog/
https://gankro.github.io/blah/rust-layouts-and-abis/
https://gankro.github.io/blah/only-in-rust/
https://gankro.github.io/blah/impl-defined/

EXTRA EXTRA RESOURCES
Various IRLO discussions:

UB and uninitialized memory
What do “memory safety”/“thread safety” mean?
Taming UB in LLVM

Guide to UB

https://internals.rust-lang.org/t/role-of-ub-uninitialized-memory/5399
https://internals.rust-lang.org/t/proposal-eliminate-wording-memory-safety-and-thread-safety/9416
https://internals.rust-lang.org/t/taming-undefined-behavior-in-llvm/6183
https://blog.regehr.org/archives/213

WHERE WE’VE BEEN

FIRST HALF: HASKELL
Pure, functional language
Rich type system

Algebraic datatypes
Polymorphism and typeclasses

Monads and effects

SECOND HALF: RUST
Safe, imperative language
Ownership: memory management without GC
Borrowing: control aliasing at all costs
“Fearless concurrency”

DIFFERENT, YET SIMILAR
Very strong compile-time checks

Haskell: typechecking
Rust: ownership and borrowing

Rich type systems
Algebraic datatypes, sums and products
Typeclasses and traits
Rust: Mutable and immutable references

Functional (features)
Closures, iterators
Patterns: map, fold, etc.

CORE LANGUAGES
Simply typed lambda calculus

Model of functional languages
While language

Model of imperative languages
Process calculus

Model of message-passing languages

LANGUAGE DESIGN IS
REALLY HARD

WHAT REALLY MATTERS?
It turns out, a lot
PL design is still a obscure art

Not clear how to teach design
Requires wisdom, and a ton of experience

Graydon Hoare has good on this
Original inventor of Rust
Also invented Monotone, before Git

thoughts

https://graydon2.dreamwidth.org/259333.html

CORE TECHNICAL CONCERNS
Literally “what works”

How fast is the code?
How fast is the compiler?
How well does it scale?
How compact is the code?
Can we build a lazy language?

TRADEOFFS AND WEIGHTING
Can’t have the best of all worlds

Peak performance
Correctness
Compilation speed
Language complexity
…

How to balance these tradeoffs?

QUALITY OF IMPLEMENTATION
Languages involve implementation

How many bugs are in the compiler?
How quickly are bugs �xed?
How many people are working on tooling?
How is the effort funded?
Where are the engineers coming from?
Deliver quality on schedule?
How is the project managed and organized?

COGNITIVE LOAD
PL is a human computer interface
Computer side is easier to measure
Human side is very poorly understood

How hard is it to work in the language?
How predictable/intelligible is the compiler?
How hard is it to understand certain features?
How much can a person “hold in their head”?

HUMAN/CULTURAL CONTEXT
Languages are used by humans

Which libraries are better?
Which libraries are worse/missing?
How is the documentation?

What is this language “for”? Who will want to use it?
Often depends on cultural context at the start

TECHNICAL CONTEXT
What technologies does the language work with?
Many of these are not feasible to change

Operating systems
Foreign function interface
Networking, databases
Standards: �oating point, unicode, …

How to adapt to these requirements?

WHAT’S NEXT?

LOTS OF ROOM FOR BETTER LANGUAGES
PL features take a very long time to mature

Haskell has been around for 30 years
Rust is young, but builds on decades of PLs

A of promising featuresgood list

https://graydon2.dreamwidth.org/253769.html

MODULES
Most languages don’t have module systems

Or: just use modules for namespaces
Mostly: combine modules by “including”

Richer module systems in SML/OCaml
Decompose code into separate parts

Fancier ways to combine whole program units
Functions that transform modules
Select between modules at run time

ERROR HANDLING
No good solutions known, many not-so-good ones
Exceptions

Who should handle exception?
At any moment, could jump to handler

Return error codes
Programmers forget to check

More philosophically
What errors should be caught?
What errors should simply cause a crash?
What is an error?

EFFECT SYSTEMS
IO in Haskell: any kind of side-effect
Effect systems: track speci�c effects

“This function reads a �le”
“This function sends on network”
“This function prints to screen”

In research languages, but still far to go

REFINEMENT/DEPENDENT TYPE SYSTEMS
Even fancier type systems
The dream: use types to encode full spec

“This function returns a sorted list”
“This function �nds the minimum element”
“This function correctly compiles C to assembly”

… and have the compiler check it for you
Currently: very hard to use

SESSION TYPES
Types for communicating processes

Closely related to process calculus
Ensure that sender/receiver on same page

Avoid deadlocks, wrong messages, etc.
Long studied, not yet mature

RICHER PATTERNS
Pattern matching is nice, once you get used to it
Currently pretty basic: name different parts of data
Fancier matching behavior?

Match the �rst non-zero element in list
Match the last even number, or fail

COST/RESOURCE ANALYSIS
Fancier types for time and space

Describe how long function takes to run
Describe how much space function uses

Catch space leaks, or rare worst-cases

FORMALIZATION
Languages are still implemented �rst
Later on: people try to formalize (sometimes)
Time and time again: serious design �aws

Compilers don’t correctly compile
Ambiguous or unclear desired behavior
Type systems that don’t guarantee safety

Currently: formalization is very expensive

NEW KINDS OF HARDWARE
Not just programming a CPU anymore

GPU, TPU, custom chips, etc.
How to program these very-different platforms?

Would like to write just one program

WHAT ELSE IS IN PL?

IMPLEMENTATION (CS 536/701)
How to implement languages?

How do interpreters and compilers work?
How to make programs go fast?

Compiler optimizations? JITs?
How to make compilers go fast?

Incremental compilation?
How to implement functional languages?
How does type checking and type inference work?

VERIFICATION (CS 703/704)
What can even fancier type systems do?
How to use automated solvers to verify programs?

SMT and Horn solvers?
Model checking?

How to verify imperative programs?
How to verify program correctness

At run time? Contracts and dynamic analyses
At compile time? Abstract interpretation

SYNTHESIS (CS 703)
How to write programs automatically?
How to guide solvers to �nd correct programs?
How to do machine learning on open source code?

SEMANTICS (CS 704)
How to give a more realistic operational semantics?

With a stack, control, etc.
How to model concurrency mathematically?

Process calculus, Petri nets, …
How to model memory on multicore machines?

Weak memory models
How to design languages for mathematical proofs?

Theorem provers and dependent type theories
How to model programs more mathematically?

Denotational semantics

THAT’S ALL, FOLKS:
REMEMBER TO DO
COURSE EVALS!

