LECTURE 26

Theory and Design of PL (CS 538)
April 27,2020

PLEASE COMPLETE
COURSE EVALS!

RECAP: THE ASYNC
STORY SO FAR

COOPERATIVE MULTITASKING

e Tasks decide when to yield, not forced to yield
e Scheduled by language runtime, not OS
e Useful when we want to run more tasks than OS limit

SUSPEND/RESUME TASKS

e Like threads, each task must be ready to suspend
e Suspends only happen at specific “yield” points

» |[f atask doesn’t yield, it never suspends
e Tasks can be much lighter than OS threads

MOST BASIC: STATE MACHINES

e Model each task as a state machine
e Each state: task waits for X to happen/be ready
e Toresume from state: check if X is ready
= |[f Xis ready, task goes to next state
= |[f X not ready, yield control and try later
e Conceptually clean, but a huge pain to write

BETTER: THE FUTURES ABSTRACTION

e A Future: avalue that will be ready later
s Also known as a “promise”
e Wraps a state machine, client polls to check if ready
= Ready: state machine is done, get final value
= NotReady: made some progress, but not done yet
e Futures can be cleanly composed
= Build complex state machines out of simple ones
e Still, writing code with futures is awkward

BUILDING COROUTINES:
COMPILER SUPPORT

PYTHON GENERATORS, AGAIN

Generator producing 0, 1, ..., n-1 one at a time
def firstn(n):
num = 0
while num < n:
yield num # return num to caller, suspend execution

num += 1 # resume here next time generator called
gen = firstn(100); # initialize generator
resO = next (gen) ; # 0
resl = next (gen); # 1
res2 = next (gen); # 2
res3 = next (gen) ; # 3

ISN'T THIS JUST AN ITERATOR?

e |[ndeed, we can do encode it as an lterator

struct FirstNState { max: u3Z2, num: u3’Z2 }
impl ITterator for FirstNState
type Item = u32;
fn next (&mut self) -> Option<Self::Item> {
1f self.num < self.max {
self.num += 1;
Some (self.num - 1)
} else {
None

}
fn firstn(n: u32) -> FirstNState /{

FirstNState { max: n, num: 0 }

TRYING IT OUT

e Works just like we expected:

let mut gen = firstn(100);

(Y; // Some(0)
resl = gen.next(); // Some (1)
res?2 = gen.next(); // Some (2)
res3 = gen.next(); // Some (3)

resO = gen.next

BUT THIS IS A LOT OF TROUBLE

e Need to do a bunch of stuff:
m Define iteration struct (FirstNState)
= [mplement Iterator correctly (next)
= Define constructor (firstn)
e Python code with yield is much more natural
m Easily expresses more complex generators

Can we just write “normal” code instead?

COMPILER BUILDS FUTURES

e Programmer can mark certain code as “future mode”
m Code uses regular programming language (Rust)
e Programmer marks places where program may yield
e Compiler turns code into a future
s Automatically generates the states (big enum)
s Automatically figures out what state to remember
= Automatically generates state transitions

ASYNC/AWAIT

e The idea and syntax is called async/await
e Adopted by many languages (C#, Python, JS, ...)
e “async”’: marks “future mode” code
e “await”: call other “future mode” code
= Canonly be done in “future mode”
= Marks yield points: if called future not ready, vield

IN RUST: ASYNC BLOCK

e An async block looks something like this:

async { /* regular rust code */ }

async move { /* moves in env. variables */ }

o | ast expr. is returned as the “result” of block
= Should be a “regular” value, not a future
e Types: suppose “regular” returntypeis T
= Then: async block has type “something
implementing Future with Output=T"

EXAMPLE: ASYNC BLOCH

e Rust compiler turns an async block into a Future
e Can store this future in a variable, pass to fn, etc.

let my async block = async { 42 }; // you write this

// Compiler generates (something like) this:
enum AsyncStated?2 { Start, Done };
struct AsyncBlock4?2 { state: AsyncStated? };
impl Future for AsyncBlock42 {

type Output = 132;

fn poll (&émut self) -> Poll<i32> {

1f self.state == Start {
*self.state = Done; Ready(42)
} else
panic! ("Already returned 42")

oo
let my async block = AsyncBlock42 { state: Start };

IN RUST: ASYNC EN

e An async function = async block with arguments

m [nside function, write (mostly normal) Rust code
e Returns Future, but type doesn’'t mention Future

// you write this:

async fn my async fn(arg: Vec<i32>) -> String {
/* body */

}

// compiler generates this:
fn my async fn(arg: Vec<i32Z2>) -> FutStr {
/* body converted into a Future */

J

// FutStr implements Future with Output = String

EVEN MORE GENERALLY

e FutStr name is compiler-generated, we don’t know it
e Can write this code:

// you write this:

async fn my async fn(arg: Vec<i32>) -> String {
/* body */

}

// compiler generates this:
fn my async fn(arg: Vec<i32>) -> impl Future<Output = String> {
/* body converted into a Future */

)

// Returns "something" impl. Future with Output = String

CALLING ASYNC FN

e Async fn are called just like regular fn

e Beware: they return a Future, not a “regular” value
= They return a “recipe”, not a “cake”

e Calling an async fn doesn't really do anything!
= Doesn'tdo I/O, send network packets, etc.

BIG PITFALL: THIS DOESN'T DO ANYTHING

let my fut = async {
let my str = my async fn(vec![1l, 2, 3]);
// ... type of my str isn't String ...

}

e Whenmy fut ispolled,it doesn’'t do anything:
1. Gets a Future and just stores it
2. Doesn’t do the work to produce the String!

IN RUST. AWAIT

e [n async blocks/fns, can write . await after a Future
m Canonlyuse await inasync context!

e I[f futisakFuture, fut.await means:
1. Check if fut is Ready (use pol1l ())

2. If Ready(val), unwrap it to val and continue
3. If NotReady, yield (return NotReady)

AWAIT IS MORE THAN A BIT LIKE 7

e |nfns. returning Result, can write ? after a Result
o |f resisaResult, res? means:

1. Check if res is Ok(...)

2. If Ok(val), unwrap it to val and continue
3. If Err(e), return Err(e) from fn

THIS CALL IS BETTER

let my fut = async {

let my str = my async fn(vec![1l, 2, 3]).await;
// ... do stuff with my str ...
}

e When polled, runs future frommy async f

1. If itis Ready(str), assignstrtomy str

2. If it is NotReady, return NotReady
e “Wait for this thing to finish, then continue”

B

async fn
async f£n
async £n

1f the

RUNNING EXAMPLE

e Set up a bunch of async fns:

get food order() -> Food { /* ... */ }
get drink order () -> Drink { /* ... */ }
make food(the food: Food) -> () {

food = Burger {

make burger.awalt;

} else

{

make plzza.awalt;

J
J

async f£n
async £n

make drink(the drink: Drink) -> () { /* ...

wash dishes() -> () { /* ... */}

J

RUNNING EXAMPLE

e Now, we can write the waiter using async/await

let serve custl fut = async {
let food = get food order () .await;
let drink = get drink order() .awailt;

make food(food) .await;
make drink (drink) .await;

)

let serve cust2 fut = async { /* ... */ }

let waiter fut = async move {
join (serve custl fut, serve cust2 fut) .await;

wash dishes() .await;

J

WHAT'S GOOD ABOUT ASYNG/AWAIT?

e Code s very natural: looks almost like regular code
e Compiler figures out how to make all the futures

= Figures out what to remember

m Generates the state machine, transitions
e Clearly marks points where async fn. may yield

WHAT'S WRONG WITH ASYNC/AWAIT?

e Calling regular fn. from async fn.: easy
e Calling async fn. from async fn.: OK (await)
e Calling async fn. from regular fn.: impossible
e Splits the language: async fn, or regular fn.?
= Might need duplication: two versions of fns.
e See pros and cons

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://lukasa.co.uk/2016/07/The_Function_Colour_Myth/

BIG PITFALL: BLOGRING IN ASYNC CODE

e Many stdlib calls “block”: might take a long time

B std::sync: :Mu

~ex: :lock (all of std::sync)

m std::fs::read(all of std::fs, std::net)
" std::thread: :sleep (all of std::thread)

= .. Mmany, many more
e These calls do not yield: will block state machine!
= No compiler error, but much slower performance

Never use blocking calls in async code!!!

HOW T0 RUN THE
FUTURE?

A FUTURE IS A RECIPE

e So far, we've focused only on building Futures
e Futureisjustarecipe: it doesn’t run itself!
e After building a Future, we want to run it

= This runner is called an “async runtime”

A SIMPLE RUNTIME

e Takes a Future, polls it until it is done

fn run fut<¥F, T>(fut: &mut F) -> T
where
F': Future<Output = T>
{
loop {
1f let Ready (result) = fut.poll () {
return result;

}
// else, loop and try again

WHAT'S WRONG WITH THIS SOLUTION?

e Only runs one Future

= \What if we want to run more than one?
e Repeatedly looping is wasteful
e Single threaded

WE WANT A FEW MORE THINGS

e Ability to run alarge number of Futures

= Schedule futures efficiently, switch, etc.
e Poll less: only poll when a Future is ready

= But how do we know it's ready before polling??
e Run many futures on a small number of threads

= Also known as “M:N” threading

GENERAL DESIGN OF
ASYNC RUNTIMES

THREE MAIN PARTS

1. Executor: the thing that calls poll

2. Reactor: signals when things are ready
e Typically: hooks into OS or hardware devices
e |/O operation is done, timer goes off, etc.

3. Waker: conveys signal to executor

EXECUTOR

e We'll call astarted Future a “task”
e Maintains two queues of tasks
1. Ready queue: tasks that may be ready
2. Waiting queue: tasks that are waiting
e Repeatedly gets a ready task, calls poll
= |[f returns Ready, task is finished
= |[f returns NotReady, put back on waiting queue
o Often (but not always) multi-threaded
= Executor decides where to run tasks

REACTOR

e A Future thatis not ready is waiting on something

= Aswaiting on B Is waiting on C is waiting on...
o Ultimately: waiting for some hardware event(s)

= File read/write to finish, network packet to arrive
e Reactor monitors hardware, signals new events

m Uses OS syscalls: epoll, kqueue, IOCP (cf. mio)

https://docs.rs/crate/mio/0.7.0

WAKERS

e Reactor uses Waker to signal Executor
m Essentially, a callback used when hardware ready
e Associated to a task and an operation:
= “When this operation is done, try task again”
e Sequence of events:
1. Task X waits on |/O op, registers Waker WX, yields
2. Hardware says |/O operation is done
3. Reactor gets the Waker WX, calls it
4. WX goes to Executor, puts X on the ready queue

THE REAL FUTURES TRAIT

pub trait Future {
type Output;
fn poll (
self: Pin<&mut Self>, // ignore Pin for now
cx: &mut Context
) —> Poll<Self::Output>;

)

e Context holds a Waker, argumenttopoll
e poll threads the Waker through
= Polling other, “child” futures: pass cx along
s Waiting for “leafs” (1/0): register cx with Reactor

POLLING A FUTURE, TOP T0 BOTTOM

e Say we have three Futures: A, B
= A waits on B, B waits on file read
e Sequence of events: polling
1. Executor polls A, passes in Waker for A
2. Polling A polls B, passes in Waker for A
3. Polling B tries file read, passes in Waker for A
4. File read not ready, save Waker for A for this op

REACTING TO AN EVENT, BOTTOM 10 TOP

e Sequence of events: reacting
1. Reactor gets signal: file read is done
2. Looks up Waker for this op, calls it
3. Waker tells Executor to move A to ready queue
4. Executor polls A, which polls B, ...

RUST ASYNC RUNTIMES

TODAY: TWO MAIN LIBRARIES

e tokio

® First major async runtime for Rust

= Heavier: more complex, more features
* async-std

= More recent async runtime for Rust

= | ighter: less complex, less features

We'll talk about tokio, though the Rust
async ecosystem is evolving rapidly

https://tokio.rs/
https://async.rs/

ENTRY POINT

e tokio::runtime
e Main method: block on
m Pass it a future, run the task until it is done

use tokio::runtime: :Runtime;

let mut rt = Runtime::new()?; // make the Runtime

rt.block on(async {
let food = get food order() .awailt;

let drink = get drink order() .await;
make food(food) .await;
make drink (drink) .await;

VA

https://tokio-rs.github.io/tokio/doc/tokio/runtime/index.html

SPAWNING TASKS

FUTURES FOR 1/0

e tokio::{net, fs, signal, process}
e Rust stdlib has networking and file system calls
= E.g. read from afile, write to a file, etc.
e These are synchronous: they block while waiting
= Not suitable for use in async code!
e tokio has async versions of these standard calls
s tokio’s “leaf futures”
= \When waiting for read, register a Waker and yield

https://tokio-rs.github.io/tokio/doc/tokio/index.html#asynchronous-io

OTHER GOODIES

e tokio::sync
= Async channels: communicate between tasks
= Async mutexes: yield instead of blocking
e tokio::time
= Delays: Put a task to sleep for some time
= Timeouts: Cancel a task if too much time passes

https://tokio-rs.github.io/tokio/doc/tokio/sync/index.html
https://tokio-rs.github.io/tokio/doc/tokio/time/index.html

MUCH MORE ON
ASYNCG/AWAIT

STREAMS

e Futures yields one T when done, after waiting
e Streams yield multiple Ts, after waiting
e Async counterpart of Iterator
= |f next item not ready, yield instead of blocking
e Natural abstraction (e.g., stream of HTTP requests)

TRAIT LOOKS SOMETHING LIKE THIS

pub trait Stream {
type Item;
fn poll next (
self: Pin<&émut Self>,
cx: &mut Context
) —> Poll<Option<Self::Item>>;

e Thisreturnsan Poll<Option<Item>>
" NotReady: next item not ready
" Ready (Some (item)): nextitem ready
m Ready (None) : stream finished

MORE ON STREAMS/GENERATORS

e Stream traits: here

e Streams and concurrency: here

e parallel-stream: here and here

e Combinators: StreamExt and TryStreamExt
e Generator design: here and here

https://blog.yoshuawuyts.com/streams-concurrency/
https://blog.yoshuawuyts.com/streams-concurrency/
https://docs.rs/parallel-stream/2.1.1/parallel_stream/
https://blog.yoshuawuyts.com/parallel-stream/
https://docs.rs/futures/0.3.4/futures/?search=StreamExt
https://docs.rs/futures/0.3.4/futures/stream/trait.TryStreamExt.html
https://boats.gitlab.io/blog/post/generators-i/
https://boats.gitlab.io/blog/post/generators-ii/

EXAMPLES AND RESOURCES

e Building an executor/reactor: here and here
e Cooperative multitasking in an OS kernel: here

https://rust-lang.github.io/async-book/02_execution/04_executor.html
https://stjepang.github.io/2020/01/31/build-your-own-executor.html
https://os.phil-opp.com/async-await/

DESIGN NOTES

e Removing green threads from Rust: RFC
e Futures: here, here, and here

e Pintrait: 1234567/

e \WWakers: here and here

e async and borrowing: here

e async and destructors: here

e async/await syntax: here and here

e Scheduler design: here and here

https://github.com/aturon/rfcs/blob/remove-runtime/active/0000-remove-runtime.md
https://aturon.github.io/tech/2016/08/11/futures/
https://aturon.github.io/tech/2016/09/07/futures-design/
https://aturon.github.io/tech/2018/02/27/futures-0-2-RC/
https://boats.gitlab.io/blog/post/2018-01-25-async-i-self-referential-structs/
https://boats.gitlab.io/blog/post/2018-01-30-async-ii-narrowing-the-scope/
https://boats.gitlab.io/blog/post/2018-01-30-async-iii-moving-forward/
https://boats.gitlab.io/blog/post/2018-02-07-async-iv-an-even-better-proposal/
https://boats.gitlab.io/blog/post/2018-02-08-async-v-getting-back-to-the-futures/
https://boats.gitlab.io/blog/post/2018-03-20-async-vi/
https://boats.gitlab.io/blog/post/2018-04-06-async-await-final/
https://boats.gitlab.io/blog/post/wakers-i/
https://boats.gitlab.io/blog/post/wakers-ii/
https://aturon.github.io/tech/2018/04/24/async-borrowing/
https://boats.gitlab.io/blog/post/poll-drop/
https://boats.gitlab.io/blog/post/await-decision/
https://boats.gitlab.io/blog/post/await-decision-ii/
https://tokio.rs/blog/2019-10-scheduler/
https://tokio.rs/blog/2020-04-preemption/

PLEASE COMPLETE
COURSE EVALS!

