
LECTURE 26
Theory and Design of PL (CS 538)

April 27, 2020

PLEASE COMPLETE
COURSE EVALS!

RECAP: THE ASYNC
STORY SO FAR

COOPERATIVE MULTITASKING
Tasks decide when to yield, not forced to yield
Scheduled by language runtime, not OS
Useful when we want to run more tasks than OS limit

SUSPEND/RESUME TASKS
Like threads, each task must be ready to suspend
Suspends only happen at speci�c “yield” points

If a task doesn’t yield, it never suspends
Tasks can be much lighter than OS threads

MOST BASIC: STATE MACHINES
Model each task as a state machine
Each state: task waits for X to happen/be ready
To resume from state: check if X is ready

If X is ready, task goes to next state
If X not ready, yield control and try later

Conceptually clean, but a huge pain to write

BETTER: THE FUTURES ABSTRACTION
A Future: a value that will be ready later

Also known as a “promise”
Wraps a state machine, client polls to check if ready

Ready: state machine is done, get �nal value
NotReady: made some progress, but not done yet

Futures can be cleanly composed
Build complex state machines out of simple ones

Still, writing code with futures is awkward

BUILDING COROUTINES:
COMPILER SUPPORT

PYTHON GENERATORS, AGAIN
Generator producing 0, 1, ..., n-1 one at a time
def firstn(n):
 num = 0
 while num < n:
 yield num # return num to caller, suspend execution
 num += 1 # resume here next time generator called

gen = firstn(100); # initialize generator

res0 = next(gen); # 0
res1 = next(gen); # 1
res2 = next(gen); # 2
res3 = next(gen); # 3

ISN’T THIS JUST AN ITERATOR?
Indeed, we can do encode it as an Iterator

struct FirstNState { max: u32, num: u32 }
impl Iterator for FirstNState {
 type Item = u32;
 fn next(&mut self) -> Option<Self::Item> {
 if self.num < self.max {
 self.num += 1;
 Some(self.num - 1)
 } else {
 None
 }
 }
}
fn firstn(n: u32) -> FirstNState {
 FirstNState { max: n, num: 0 }
}

TRYING IT OUT
Works just like we expected:

let mut gen = firstn(100);

res0 = gen.next(); // Some(0)
res1 = gen.next(); // Some(1)
res2 = gen.next(); // Some(2)
res3 = gen.next(); // Some(3)

BUT THIS IS A LOT OF TROUBLE
Need to do a bunch of stuff:

De�ne iteration struct (FirstNState)
Implement Iterator correctly (next)
De�ne constructor (�rstn)

Python code with yield is much more natural
Easily expresses more complex generators

Can we just write “normal” code instead?

COMPILER BUILDS FUTURES
Programmer can mark certain code as “future mode”

Code uses regular programming language (Rust)
Programmer marks places where program may yield
Compiler turns code into a future

Automatically generates the states (big enum)
Automatically �gures out what state to remember
Automatically generates state transitions

ASYNC/AWAIT
The idea and syntax is called async/await
Adopted by many languages (C#, Python, JS, …)
“async”: marks “future mode” code
“await”: call other “future mode” code

Can only be done in “future mode”
Marks yield points: if called future not ready, yield

IN RUST: ASYNC BLOCK
An async block looks something like this:

Last expr. is returned as the “result” of block
Should be a “regular” value, not a future

Types: suppose “regular” return type is T
Then: async block has type “something
implementing Future with Output = T”

async { /* regular rust code */ }

async move { /* moves in env. variables */ }

EXAMPLE: ASYNC BLOCK
Rust compiler turns an async block into a Future
Can store this future in a variable, pass to fn, etc.

let my_async_block = async { 42 }; // you write this

// Compiler generates (something like) this:
enum AsyncState42 { Start, Done };
struct AsyncBlock42 { state: AsyncState42 };
impl Future for AsyncBlock42 {
 type Output = i32;
 fn poll(&mut self) -> Poll<i32> {
 if self.state == Start {
 *self.state = Done; Ready(42)
 } else {
 panic!("Already returned 42")
} } }
let my_async_block = AsyncBlock42 { state: Start };

IN RUST: ASYNC FN
An async function async block with arguments

Inside function, write (mostly normal) Rust code
Returns Future, but type doesn’t mention Future

≈

// you write this:
async fn my_async_fn(arg: Vec<i32>) -> String {
 /* body */
}

// compiler generates this:
fn my_async_fn(arg: Vec<i32>) -> FutStr {
 /* body converted into a Future */
}

// FutStr implements Future with Output = String

EVEN MORE GENERALLY
FutStr name is compiler-generated, we don’t know it
Can write this code:

// you write this:
async fn my_async_fn(arg: Vec<i32>) -> String {
 /* body */
}

// compiler generates this:
fn my_async_fn(arg: Vec<i32>) -> impl Future<Output = String> {
 /* body converted into a Future */
}

// Returns "something" impl. Future with Output = String

CALLING ASYNC FN
Async fn are called just like regular fn
Beware: they return a Future, not a “regular” value

They return a “recipe”, not a “cake”
Calling an async fn doesn’t really do anything!

Doesn’t do I/O, send network packets, etc.

BIG PITFALL: THIS DOESN’T DO ANYTHING

When my_fut is polled, it doesn’t do anything:

1. Gets a Future and just stores it
2. Doesn’t do the work to produce the String!

let my_fut = async {
 let my_str = my_async_fn(vec![1, 2, 3]);
 // ... type of my_str isn't String ...
}

IN RUST: AWAIT
In async blocks/fns, can write .await after a Future

Can only use await in async context!

If fut is a Future, fut.await means:

1. Check if fut is Ready (use poll())

2. If Ready(val), unwrap it to val and continue
3. If NotReady, yield (return NotReady)

AWAIT IS MORE THAN A BIT LIKE ?
In fns. returning Result, can write ? after a Result

If res is a Result, res? means:

1. Check if res is Ok(…)

2. If Ok(val), unwrap it to val and continue
3. If Err(e), return Err(e) from fn

THIS CALL IS BETTER

When polled, runs future from my_async_fn
1. If it is Ready(str), assign str to my_str
2. If it is NotReady, return NotReady
“Wait for this thing to �nish, then continue”

let my_fut = async {
 let my_str = my_async_fn(vec![1, 2, 3]).await;
 // ... do stuff with my_str ...
}

RUNNING EXAMPLE
Set up a bunch of async fns:

async fn get_food_order() -> Food { /* ... */ }
async fn get_drink_order() -> Drink { /* ... */ }
async fn make_food(the_food: Food) -> () {
 if the_food = Burger {
 make_burger.await;
 } else {
 make_pizza.await;
 }
}
async fn make_drink(the_drink: Drink) -> () { /* ... */ }
async fn wash_dishes() -> () { /* ... */ }

RUNNING EXAMPLE
Now, we can write the waiter using async/await

let serve_cust1_fut = async {
 let food = get_food_order().await;
 let drink = get_drink_order().await;
 make_food(food).await;
 make_drink(drink).await;
}
let serve_cust2_fut = async { /* ... */ }

let waiter_fut = async move {
 join(serve_cust1_fut, serve_cust2_fut).await;
 wash_dishes().await;
}

WHAT’S GOOD ABOUT ASYNC/AWAIT?
Code is very natural: looks almost like regular code
Compiler �gures out how to make all the futures

Figures out what to remember
Generates the state machine, transitions

Clearly marks points where async fn. may yield

WHAT’S WRONG WITH ASYNC/AWAIT?
Calling regular fn. from async fn.: easy
Calling async fn. from async fn.: OK (await)
Calling async fn. from regular fn.: impossible
Splits the language: async fn, or regular fn.?

Might need duplication: two versions of fns.
See and pros cons

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://lukasa.co.uk/2016/07/The_Function_Colour_Myth/

BIG PITFALL: BLOCKING IN ASYNC CODE
Many stdlib calls “block”: might take a long time
std::sync::Mutex::lock (all of std::sync)

std::fs::read (all of std::fs, std::net)

std::thread::sleep (all of std::thread)

… many, many more
These calls do not yield: will block state machine!

No compiler error, but much slower performance

Never use blocking calls in async code!!!

HOW TO RUN THE
FUTURE?

A FUTURE IS A RECIPE
So far, we’ve focused only on building Futures
Future is just a recipe: it doesn’t run itself!
After building a Future, we want to run it

This runner is called an “async runtime”

A SIMPLE RUNTIME
Takes a Future, polls it until it is done

fn run_fut<F, T>(fut: &mut F) -> T
where
 F: Future<Output = T>
{
 loop {
 if let Ready(result) = fut.poll() {
 return result;
 }
 // else, loop and try again
 }
}

WHAT’S WRONG WITH THIS SOLUTION?
Only runs one Future

What if we want to run more than one?
Repeatedly looping is wasteful
Single threaded

WE WANT A FEW MORE THINGS
Ability to run a large number of Futures

Schedule futures ef�ciently, switch, etc.
Poll less: only poll when a Future is ready

But how do we know it’s ready before polling??
Run many futures on a small number of threads

Also known as “M:N” threading

GENERAL DESIGN OF
ASYNC RUNTIMES

THREE MAIN PARTS
1. Executor: the thing that calls poll
2. Reactor: signals when things are ready

Typically: hooks into OS or hardware devices
I/O operation is done, timer goes off, etc.

3. Waker: conveys signal to executor

EXECUTOR
We’ll call a started Future a “task”
Maintains two queues of tasks
1. Ready queue: tasks that may be ready
2. Waiting queue: tasks that are waiting
Repeatedly gets a ready task, calls poll

If returns Ready, task is �nished
If returns NotReady, put back on waiting queue

Often (but not always) multi-threaded
Executor decides where to run tasks

REACTOR
A Future that is not ready is waiting on something

A is waiting on B is waiting on C is waiting on …
Ultimately: waiting for some hardware event(s)

File read/write to �nish, network packet to arrive
Reactor monitors hardware, signals new events

Uses OS syscalls: epoll, kqueue, IOCP (cf.)mio

https://docs.rs/crate/mio/0.7.0

WAKERS
Reactor uses Waker to signal Executor

Essentially, a callback used when hardware ready
Associated to a task and an operation:

“When this operation is done, try task again”
Sequence of events:
1. Task X waits on I/O op, registers Waker WX, yields
2. Hardware says I/O operation is done
3. Reactor gets the Waker WX, calls it
4. WX goes to Executor, puts X on the ready queue

THE REAL FUTURES TRAIT

Context holds a Waker, argument to poll
poll threads the Waker through

Polling other, “child” futures: pass cx along

Waiting for “leafs” (I/O): register cx with Reactor

pub trait Future {
 type Output;
 fn poll(
 self: Pin<&mut Self>, // ignore Pin for now
 cx: &mut Context
) -> Poll<Self::Output>;
}

POLLING A FUTURE, TOP TO BOTTOM
Say we have three Futures: A, B

A waits on B, B waits on �le read
Sequence of events: polling
1. Executor polls A, passes in Waker for A
2. Polling A polls B, passes in Waker for A
3. Polling B tries �le read, passes in Waker for A
4. File read not ready, save Waker for A for this op

REACTING TO AN EVENT, BOTTOM TO TOP
Sequence of events: reacting
1. Reactor gets signal: �le read is done
2. Looks up Waker for this op, calls it
3. Waker tells Executor to move A to ready queue
4. Executor polls A, which polls B, …

RUST ASYNC RUNTIMES

TODAY: TWO MAIN LIBRARIES

First major async runtime for Rust
Heavier: more complex, more features

More recent async runtime for Rust
Lighter: less complex, less features

tokio

async-std

We’ll talk about tokio, though the Rust
async ecosystem is evolving rapidly

https://tokio.rs/
https://async.rs/

ENTRY POINT

Main method: block_on
Pass it a future, run the task until it is done

tokio::runtime

use tokio::runtime::Runtime;

let mut rt = Runtime::new()?; // make the Runtime

rt.block_on(async {
 let food = get_food_order().await;
 let drink = get_drink_order().await;
 make_food(food).await;
 make_drink(drink).await;
 // ...
});

https://tokio-rs.github.io/tokio/doc/tokio/runtime/index.html

SPAWNING TASKS

FUTURES FOR I/O

Rust stdlib has networking and �le system calls
E.g., read from a �le, write to a �le, etc.

These are synchronous: they block while waiting
Not suitable for use in async code!

tokio has async versions of these standard calls
tokio’s “leaf futures”
When waiting for read, register a Waker and yield

tokio::{net, fs, signal, process}

https://tokio-rs.github.io/tokio/doc/tokio/index.html#asynchronous-io

OTHER GOODIES

Async channels: communicate between tasks
Async mutexes: yield instead of blocking

Delays: Put a task to sleep for some time
Timeouts: Cancel a task if too much time passes

tokio::sync

tokio::time

https://tokio-rs.github.io/tokio/doc/tokio/sync/index.html
https://tokio-rs.github.io/tokio/doc/tokio/time/index.html

MUCH MORE ON
ASYNC/AWAIT

STREAMS
Futures yields one T when done, after waiting
Streams yield multiple Ts, after waiting
Async counterpart of Iterator

If next item not ready, yield instead of blocking
Natural abstraction (e.g., stream of HTTP requests)

TRAIT LOOKS SOMETHING LIKE THIS

This returns an Poll<Option<Item>>
NotReady: next item not ready

Ready(Some(item)): next item ready

Ready(None): stream �nished

pub trait Stream {
 type Item;
 fn poll_next(
 self: Pin<&mut Self>,
 cx: &mut Context
) -> Poll<Option<Self::Item>>;
}

MORE ON STREAMS/GENERATORS
Stream traits:
Streams and concurrency:
parallel-stream: and
Combinators: and
Generator design: and

here
here

here here
StreamExt TryStreamExt

here here

https://blog.yoshuawuyts.com/streams-concurrency/
https://blog.yoshuawuyts.com/streams-concurrency/
https://docs.rs/parallel-stream/2.1.1/parallel_stream/
https://blog.yoshuawuyts.com/parallel-stream/
https://docs.rs/futures/0.3.4/futures/?search=StreamExt
https://docs.rs/futures/0.3.4/futures/stream/trait.TryStreamExt.html
https://boats.gitlab.io/blog/post/generators-i/
https://boats.gitlab.io/blog/post/generators-ii/

EXAMPLES AND RESOURCES
Building an executor/reactor: and
Cooperative multitasking in an OS kernel:

here here
here

https://rust-lang.github.io/async-book/02_execution/04_executor.html
https://stjepang.github.io/2020/01/31/build-your-own-executor.html
https://os.phil-opp.com/async-await/

DESIGN NOTES
Removing green threads from Rust:
Futures: , , and
Pin trait:
Wakers: and
async and borrowing:
async and destructors:
async/await syntax: and
Scheduler design: and

RFC
here here here
1 2 3 4 5 6 7
here here

here
here

here here
here here

https://github.com/aturon/rfcs/blob/remove-runtime/active/0000-remove-runtime.md
https://aturon.github.io/tech/2016/08/11/futures/
https://aturon.github.io/tech/2016/09/07/futures-design/
https://aturon.github.io/tech/2018/02/27/futures-0-2-RC/
https://boats.gitlab.io/blog/post/2018-01-25-async-i-self-referential-structs/
https://boats.gitlab.io/blog/post/2018-01-30-async-ii-narrowing-the-scope/
https://boats.gitlab.io/blog/post/2018-01-30-async-iii-moving-forward/
https://boats.gitlab.io/blog/post/2018-02-07-async-iv-an-even-better-proposal/
https://boats.gitlab.io/blog/post/2018-02-08-async-v-getting-back-to-the-futures/
https://boats.gitlab.io/blog/post/2018-03-20-async-vi/
https://boats.gitlab.io/blog/post/2018-04-06-async-await-final/
https://boats.gitlab.io/blog/post/wakers-i/
https://boats.gitlab.io/blog/post/wakers-ii/
https://aturon.github.io/tech/2018/04/24/async-borrowing/
https://boats.gitlab.io/blog/post/poll-drop/
https://boats.gitlab.io/blog/post/await-decision/
https://boats.gitlab.io/blog/post/await-decision-ii/
https://tokio.rs/blog/2019-10-scheduler/
https://tokio.rs/blog/2020-04-preemption/

PLEASE COMPLETE
COURSE EVALS!

