
LECTURE 25
Theory and Design of PL (CS 538)

April 22, 2020

SCHEDULING NOTES

TAKEHOME FINAL: MAY 4 (MONDAY)
Covers up to next Monday (inclusive)
Open notes/computer/internet
Think: mini versions of HW/WR assignments
You will have 24 hours to complete it

Don’t spend 24 hours on it

Stay tuned for more detailed instructions

THREE MORE LECTURES
1. Asynchronous concurrency
2. More async in Rust
3. Unsafe Rust and wrapup

ASYNCHRONOUS RUST
This stuff is very new: stabilized end of 2019
Initial result of 4-5 years of discussions
Ecosystem/libraries/patterns are still evolving

More extensions are planned

VERY IMPRESSIVE FEATURE
Unlike C#/Python/JS, implemented as a Rust library

No runtime support built into language
Similar to C or C++

Suitable for low=level settings: OS, embedded, etc.
With all the bene�ts of Rust

No GC, no memory leaks/errors, no data races, …
A bit of compiler support to make it easy to use

WE WILL GO (TOO) FAST
1. How do I use this thing?

Syntax, meaning, common pitfalls
2. Why are things designed this way?

Motivation, constraints, requirements
3. What’s really going on under the hood?

Gory details, optimizations, implementation

Not all material is equally important!

THE CONCURRENCY
STORY SO FAR

CENTRAL TOOL: THREADS
1. Write a bunch of closures
2. Spawn a bunch of threads
3. Wait for threads to �nish

PRE-EMPTIVE CONCURRENCY
In Rust: threads provided by the OS
OS scheduler decides which threads to run
Pre-emptive: threads can be switched at any time

Don’t want one OS process to hog CPU

WHAT’S WRONG WITH THREADS?
OS threads are heavy: require a lot of resources

Each thread has an execution stack
Tracks state; may pause at any point in time

All OSes have thread limits
Few hundred threads OK, few thousand not OK

SOMETIMES, WE DON’T HAVE THREADS
Implementing an OS kernel
Code for embedded systems

E.g., programming a Raspberry Pi
Code running client-side in browser

E.g., Javascript code or WebAssembly (wasm)

Q: What if we need more concurrency?

EXAMPLE: “C10K PROBLEM”
Server: how to handle 10k concurrent connections?

Each one: tiny bit of compute, lots of waiting
Need concurrency, but can’t spawn 10k threads

Spawn 1000 threads: lots of waiting
Today: 1 machine can handle 1M-10M connections

COOPERATIVE
MULTITASKING

THE MAIN IDEA
1. Run many tasks on the same thread
2. Tasks yield control when they need to wait

Yield = let other tasks run
3. Cooperative: tasks work together

Task keeps running until it yields

Use a small number of threads to handle
a lot of concurrent tasks

COROUTINES
Proposed by Melvin Conway in 1958
Generalizes subroutine/function call
Subroutine: call, compute, return, done.
Coroutine: call, compute, yield, call, compute, yield, …

Can call/return more than once
Remembers state between calls

COROUTINE EXAMPLES: PYTHON
Generator producing 0, 1, ..., n-1 one at a time
def firstn(n):
 num = 0
 while num < n:
 yield num # return num to caller, suspend execution
 num += 1 # resume here next time generator called

gen = firstn(100); # initialize generator

res0 = next(gen); # 0
res1 = next(gen); # 1
res2 = next(gen); # 2
res3 = next(gen); # 3

WHY COROUTINES?

1. PROGRAMMING PATTERN
Natural for producers/consumers, pipelines
Producer: coroutine that computes and yields
Consumer: coroutine that accepts and computes
Can be awkward to write with regular subroutines

Who is the caller? Who is called?
Don’t want to mash producer/consumer together

EXAMPLE: PRODUCER-CONSUMER
Yield to another coroutine, not just to caller

var q := new queue

coroutine produce
 loop
 while q is not full
 create some new items
 add the items to q
 yield to consume

coroutine consume
 loop
 while q is not empty
 remove some items from q
 use the items
 yield to produce

2. BETTER PERFORMANCE
Scheduler can be lighter

Don’t need to interrupt processes
Tasks can be lighter

Yield when ready, not at random points in time
More ef�cient context switches

Tasks can prepare for yield, save less state

NETWORKING AND DISK I/O
One of the original motivating applications
Network transmission, disk I/O are slow (vs CPU)
Ideal properties for cooperative multitasking
1. Operations involve very little computation
2. Operations involve a lot of waiting

Potential for a lot more concurrency than
one task per thread!

COOPERATIVE VERSUS PRE-EMPTIVE
Cooperative is not “better than” pre-emptive

Often more complex, error prone, messy
Drawbacks can be avoided with runtime support

See Erlang, Go
Sometimes: cooperative gives better performance

Generally: only use it if you need it!

IMPLEMENTING
COROUTINES

LARGE DESIGN SPACE
Many languages have coroutines

E.g., C#, Erlang, Go, JS, Kotlin, Python, Scala
Many different tradeoffs. Two main choices:
1. Stack or no stack?
2. Who decides when to yield?

CHOICE 1: STACK OR NO STACK?
Stackful coroutines (as seen in Go, …)

Each coroutine has an execution stack
AKA “green threads”, “�bers”, “goroutines”

Stackless coroutines (as seen in Kotlin, Rust, …)
Coroutines do not have execution stacks

CHOICE 2: WHO DECIDES WHEN TO YIELD?
Who decides when coroutines are ready to yield?
Runtime (as seen in Go, …)

Runtime automatically swaps task when it blocks
Programmer doesn’t need to write yield

Programmer (as seen in Kotlin, Rust, …)
Runtime doesn’t automatically swap tasks
Programmer write yield, makes sure not to block

BUILDING COROUTINES:
STATE MACHINES

SIMPLE EXAMPLE: RESTAURANT WAITER
Restaurant process
1. Take food order
2. Take drink order
3. Make food: burger or pizza
4. Make drink: milkshake or iced tea
5. Wash dishes
Each step may be very slow

Don’t block: yield control after each step

IN PSEUDOCODE
food = order_food(); // yield until order ready
drink = order_drink(); // yield until drink order ready
if food == burger
 make_burger(); // yield until burger ready
else
 make_pizza(); // yield until pizza ready
if drink == milkshake
 make_milkshake(); // yield until milkshake ready
else
 make_iced_tea(); // yield until tea ready
wash_dishes(); // yield until dishes ready

MODEL AS A STATE MACHINE
States: places where we may need to wait
Process starts in Start state
At each step:

If process is ready, change state
If process not ready, yield control

At end: process reaches Done state

STATE MACHINES TYPES
First things �rst: let’s set up the types

enum Food { Burger, Pizza }
enum Drink { Milkshake, Tea }

enum WaiterState {
 Start,
 WaitingForFood,
 WaitingForDrink(Food), // remember food order
 WaitingForBurger(Drink), // remember drink order
 WaitingForPizza(Drink), // remember drink order
 WaitingForMilkshake,
 WaitingForTea,
 WaitingForDishes,
 Done,
}

STATE MACHINE CODE
struct Waiter { state: WaiterState }
impl Waiter {
 fn step (&mut self) {
 match self.state {
 Start => { start_order_food(); self.state = WaitingForFood
 WaitingForFood => {
 if let Ready(food) = get_food_order() {
 start_order_drink();
 self.state = WaitingForDrink(food)
 }
 }
 // ...
 }
 }
}

STATE MACHINE, CONT’D
match self.state {
 // ...
 WaitingForDrink(food) => {
 if let Ready(drink) = get_drink_order() {
 if food == Burger {
 start_burger();
 self.state = WaitingForBurger(drink)
 } else {
 start_pizza();
 self.state = WaitingForPizza(drink)
 }
 }
 }
 WaitingForBurger(drink) => { /* ... */ }
 // ...

STATE MACHINE DRIVER
let mut waiter = Waiter { state: Start };

while waiter.state != Done {
 waiter.step();
}

WHAT’S WRONG WITH STATE MACHINES?
Enums can be very complex

Complicated to track what data to save in states
Easy to make mistakes

Need to make sure transitions are correct
Just a pain in the ass to write!

COMPLEX EXAMPLE: A FASTER WAITER
Two food items: burger or pizza
Two drink items: milkshake or iced tea
Restaurant process
1. Take two food orders, then make food
2. Take two drink orders, then make drinks
3. After everything, wash dishes
Fast waiter: 1. and 2. can happen simultaneously

WHAT DOES THE STATE LOOK LIKE?
It’s looking pretty pretty ugly here…

enum WaiterState {
 Start,
 WaitFood1_WaitFood2,
 WaitFood1_WaitDrink2(Food), // food for 2
 WaitFood1_WaitBurger2(Drink), // drink for 2
 WaitFood1_WaitPizza2(Drink), // drink for 2
 WaitFood1_WaitMilkshake2,
 WaitFood1_WaitTea2,
 WaitFood1_WaitDishes2,

 WaitDrink1_WaitFood2(Food), // food for 1
 WaitDrink1_WaitDrink2(Food, Food), // food for 1 and 2
 WaitDrink1_WaitBurger2(Food, Drink), // food for 1, drink for 2
 WaitDrink1_WaitPizza2(Food, Drink), // food for 1, drink for 2
 WaitDrink1 WaitMilkshake2(Food), // food for 1

BUILDING COROUTINES:
(SIMPLE) FUTURES

COMBINE STATE MACHINES TOGETHER
Two ingredients
1. Building block state machines
2. Ways to combine state machines
We’ve seen this pattern before (e.g., parser)
A state machine type has Future trait (“is a Future”)

SIMPLE FUTURES
A simple version of the Rust Future trait

enum Poll<T> {
 NotReady, // value not ready yet
 Ready(T) // a value of type T is ready
}

trait Future {
 type Output; // the thing that is produced

 // try to make a step in state machine
 // if state machine done, return `Ready`
 fn poll (&mut self) -> Poll<Self::Output>
}

HIDE STATES BEHIND ABSTRACTION
Caller only cares about: are we there yet?

If done: get me the �nal result
If not done: try to make progress

Each call to poll might advance state machine

Returns Ready: state machine done

Returns NotReady: did some work, not done yet

Caller doesn’t need to think about state!

COMBINING FUTURES: SEQUENCING
State machines, just hidden

enum ThenState<Fut1, Fut2, F, T> {
 Start(Fut1, F),
 WaitingSecond(Fut2),
 Done(T),
}

fn then<Fut1, Fut2, F, T>(fst: Fut1, f: F)
 -> ThenState<Fut1, Fut2, F, T>
where
 Fut1: Future<Output = S>,
 F: FnOnce(S) -> Fut2,
 Fut2: Future<Output = T>,
{ Start(fst, f) }

COMBINING FUTURES: SEQUENCING
How to run this state machine?

impl Future for ThenState<Fut1, Fut2, F, T> {
 type Output = T;
 fn poll(&mut self) -> Poll<T> {
 match self {
 Start(fut1, f) => {
 if let Ready(res1) = fut1.poll() {
 *self = WaitingSecond(f(res1)); return NotReady
 }
 }
 WaitingSecond(fut2) => {
 if let Ready(res2) = fut2.poll() {
 *self = Done(res2); return NotReady
 }
 }
 Done(res) => return Ready(res)

THIS PATTERN AGAIN…
What the heck is this crazy type?

What would this look like in Haskell?

fn then<Fut1, Fut2, F, T>(first: Fut1, f: F)
 -> ThenState<Fut1, Fut2, F, T>
where
 Fut1: Future<Output = S>,
 F: FnOnce(S) -> Fut2,
 Fut2: Future<Output = T>,

then :: Future S -> (S -> Future T) -> Future T

-- The same type as bind (>>=)... Future is a Monad!

COMBINING FUTURES: PARALLEL
State machines, just hidden

enum JoinState<Fut1, Fut2, F, T> {
 Start(Fut1, Fut2),
 WaitingFirst(Fut1, T2),
 WaitingSecond(T1, Fut2),
 Done(T1, T2),
}

fn join<Fut1, Fut2, T1, T2>(fst: Fut1, snd: Fut2)
 -> JoinState<Fut1, Fut2, T1, T2>
where
 Fut1: Future<Output = T1>,
 Fut2: Future<Output = T2>,
{ Start(fst, snd) }

COMBINING FUTURES: SEQUENCING
How to run this state machine?

impl Future for JoinState<Fut1, Fut2, T1, T2> {
 type Output = (T1, T2);
 fn poll(&mut self) -> Poll<T> {
 match self {
 Start(fut1, fut2) => {
 match (fut1.poll(), fut2.poll()) {
 (Ready(res1), Ready(res2)) => *self = Done(res1, res2),
 (Ready(res1), NotReady) => *self = WaitingSecond(res1,
 (NotReady, Ready(res2)) => *self = WaitingFirst(fut1, r
 _ => (),
 }; return NotReady
 }
 WaitingFirst(fut1, res2) => {
 if let Ready(res2) = fut2.poll() {
 *self = Done(res1, res2); return NotReady

A DIFFERENT PATTERN…
What the heck is this crazy type?

What would this look like in Haskell?

fn join<Fut1, Fut2, T1, T2>(fst: Fut1, snd: Fut2) -> JoinState<Fu
where
 Fut1: Future<Output = T1>,
 Fut2: Future<Output = T2>,
{ Start(fst, snd) }

join :: Future S -> Future T -> Future (S, T)

-- For the curious: Future is a "strong monad"

RUNNING EXAMPLE
Use Futures to model ops that take time to complete

// impl Future for FoodFuture { type Output = Food; ... }
let mut get_food_order: FoodFuture = ...;

// impl Future for DrinkFuture { type Output = (Drink, Food); ...
// Keep track of food order while getting drink
let mut get_drink_with_ord: Fn(Food) -> DrinkFuture = ...;

// impl Future for BurgerFuture { type Output = Drink; ... }
// Keep track of drink order while making burger
let mut make_burger_with_drink: Fn(Drink) -> BurgerFuture = ...;
let mut make_pizza_with_drink: Fn(Drink) -> PizzaFuture = ...;
let mut make_milkshake: MilkshakeFuture = ...;
let mut make_tea: TeaFuture = ...;
let mut wash_dishes: DishesFuture = ...;

RUNNING EXAMPLE
Combine futures with combinators

let mut cust1 = get_food_order
 .then(|ord| get_drink_with_order(ord))
 .then(|(drink, ord)| {
 if ord == Burger { make_burger_with_drink(drink) }
 else { make_pizza_with_drink(drink) }
 })
 .then(|drink| {
 if drink == Milkshake { make_milkshake }
 else { make_tea }
 });
let mut cust2 = // ... same as cust1 ...
let mut waiter = future::join(cust1, cust2).then(|| wash_dishes);

EVEN FASTER WAITER
Take food and drink orders in any order

let mut cust_food1 = get_food_order
 .then(|ord| {
 if ord == Burger { make_burger }
 else { make_pizza }
 })
let mut cust_drink1 = get_drink
 .then(|drink| {
 if drink == Milkshake { make_milkshake }
 else { make_tea }
 });
let mut cust_food2 = // ... same as cust_food1 ...
let mut cust_drink2 = // ... same as cust_drink1 ...
let mut waiter_future = future::join4(
 cust_food1, cust_food2, cust_drink1, cust_drink2)
 .then(|| wash dishes);

FUTURE DRIVER
let mut waiter_future = ...;
let mut waiter_status = NotReady;

// repeatedly poll the future until it is ready
while waiter_status == NotReady {
 waiter_status = waiter_future.poll();
}

return waiter_status; // at end: Ready(res)

WHAT’S GOOD ABOUT FUTURES?
Much simpler than writing state machines by hand
Combine in sequence or in parallel
Uniform interface for futures: poll
Libraries work generically with all futures

 for more combinators

 for working with Result futures

FutureExt
TryFutureExt

https://docs.rs/futures/0.3.4/futures/future/trait.FutureExt.html
https://docs.rs/futures/0.3.4/futures/future/trait.TryFutureExt.html

WHAT’S WRONG WITH FUTURES?
Code can still be pretty ugly

Hard to understand, hard to debug
Sometimes still need state machines by hand

What if we want to loop?
Need to keep track of what state to save

E.g., drink order remembers food order
Especially tricky: remembering references

