
LECTURE 24
Theory and Design of PL (CS 538)

April 20, 2020

NEWS

HW5 WRAPUP
An enormous pain in the ass
Why go through all of this trouble?

Ownership: rule out most memory leaks
Aliasing: make totally unsafe stuff safe

BUILD A TREE THAT…
Gives clients pointers to internal tree memory
Lets client write whenever and whatever they want

With no runtime checks (direct memory write)
While never segfaulting or breaking the tree

Also build an iterator handing out pointers all over

impl<K, V> TreeMap<K, V> {
 // Wildly unsafe
 pub fn get_mut(&mut self, key: &K) -> Option<&mut V> { ... }
}

HW5: FEEDBACK?

HW6 OUT
Concurrency: making things go faster
We give you: a slow, single-threaded version
You make: multi-threaded versions in two ways
Should be much less grappling with borrow checker

But still a bit (The Rust Programming Language)

Start early, especially if you haven’t tried
writing concurrent code before

MODELING
CONCURRENCY

MANY ASPECTS
Parallelism and simultaneous execution
Message-passing and channels
Shared memory and locking
Threads blocking/waiting

PROCESS CALCULUS
Mathematical model of message passing
Many �avors, developed in 1970s and 1980s

Communicating sequential processes (CSP)
Communicating concurrent systems (CCS)
Pi-calculus

By Tony Hoare, Robin Milner, and many others

OUR VERSION
1. Simple arithemtic expressions
2. Channels: named pipes for communication
3. Processes: send/receive along channels

PROCESS CALCULUS:
GRAMMAR

ARITHMETIC EXPRESSIONS

Arithmetic expressions with variables
Examples of arithmetic expressions:

42
5 * 3
2 + 0 + z

num = "0" | "1" | "2" | ...

var = "x" | "y" | "z" | ...

exp = num | var | exp "+" exp | exp "*" exp | ...

CHANNELS

Addresses to send to/receive from
Different names = different addresses
We’ll use two special channels:
I: input channel into program

O: output channel from program

chn = "A" | "B" | "C" | ...

PROCESSES

Make new channel, send and receive along channel
Combine several processes together

Select between different processes
Run processes in parallel

prc = "done" (* do nothing *)
 | "make" chn "in" prc (* make new channel *)
 | "send" exp "->" chn "then" prc (* send a message *)
 | "recv" var "<-" chn "then" prc (* receive a message *)
 | "[" exp "<" exp "]" prc (* run if guard true *)
 | prc "+" prc (* run this or that *)
 | prc "|" prc (* run in parallel *)

EXAMPLES (BLACKBOARD)

OPERATIONAL
SEMANTICS

MAIN SETUP
De�ne how processes step
New addition: each transition may have a label
Labels model sending and receiving

: send num along channel

: receive num from channel
Other steps: no label (silent transitions)

P → Q

(A, n) n A
(, n)Ā n A

BLACKBOARD (OR WR6)

EXTENSION: RECURSION

WHY RECURSION?
So far: �nite number of steps
Some processes live forever (e.g., servers)
Extend the language with recursive processes

SYNTAX

Add process names and recursive de�nitions

name = "P1" | "P2" | "P3" | ... (* names of processes *)

prc = ...
 | name (* process could be a name *)

def = name "=" prc (* definition of processes *)

EXAMPLES

OPERATIONAL SEMANTICS
Just add one more rule to unfold de�nitions…

A TINY GLIMPSE OF
ERLANG

JOE ARMSTRONG
Passed away in 2019 :(
Invented Erlang while working for Ericsson
Hugely in�uential views on computing

Take a look at his
Or check out some of his

thesis
talks

http://erlang.org/download/armstrong_thesis_2003.pdf
https://www.infoq.com/presentations/self-heal-scalable-system

PRINCIPLE 1: PROCESSES
Take idea of process from OS

Not threads: no shared memory space!
Separate program into several processes

Erlang: processes are cheap
Can make millions of processes
So-called “green threads”

Rust: heavier, OS threads (can’t have so many)
Used to have green threads, taken out

PRINCIPLE 2: ISOLATION
Communicate only by message passing
A fault in one process should be contained
Share nothing concurrency

Also known as the Actor model

PRINCIPLE 3: LET IT CRASH
Will never be able to eliminate all faults
Instead: plan for faults to happen
If a process hits an error, just crash it

Don’t make things worse
Let someone other process �x/restart

THE ERLANG LANGUAGE
Designed for telecom applications

Soft real-time, highly reliable
Designed for processes that live forever

Can swap in code updates live
At the core: processes, messages, isolation

BIG IMPACT
Runs Ericsson telecom switches

Handles estimated 50% of all cell traf�c
OTP libraries, Open Telecom Protocol

Runs Whatsapp and FB chat (previously)
Whatsapp: 50 employees for 900M users (2015)

Many successful applications
CouchDB, Riak, Elixir, …

SPAWNING PROCESSES

Just like in Rust: pass it a closure

my_proc = fun() -> 2 + 2 end.
p_id = spawn(my_proc).

SENDING MESSAGES

Asynchronous channels: send never blocks
Send directly to process, not to speci�c channel

p_id ! hello.
self() ! there.

RECEIVING MESSAGES

Do a case analysis on received message
Each process has one incoming queue, like a mailbox

dolphin() ->
 receive
 do_a_flip ->
 io:format("How about no?~n");
 fish ->
 io:format("So long and thanks for all the fish!~n");
 _ ->
 io:format("Heh, we're smarter than you humans.~n")
 end.

Universal Server: can turn into any another process

Lowercase match on string, uppercase variable

JOE’S FAVORITE PROGRAM

universal_server() ->
 receive
 {become, New_proc} ->
 New_proc()
 end.

https://joearms.github.io/published/2013-11-21-My-favorite-erlang-program.html

FACTORIAL SERVER
Wait for message, respond with factorial

factorial_server() ->
 receive
 {From, N} ->
 From ! factorial(N),
 factorial_server()
 end.

factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

BECOMING FACTORIAL
Turn a universal server into a factorial server

/0 means zero arguments (Erlang dynamically typed)

main() ->
 univ_pid = spawn(fun universal_server/0),
 univ_pid ! {become, fun factorial_server/0},
 univ_pid ! {self(), 50},
 receive
 Response -> Response
 end.

