LECTURE 24

Theory and Design of PL (CS 538)
April 20, 2020

HWo WRAPUP

e An enormous pain in the ass

e Why go through all of this trouble?
= Ownership: rule out most memory leaks
= Aliasing: make totally unsafe stuff safe

BUILD A TREE THAL...

e Gives clients pointers to internal tree memory

e Lets client write whenever and whatever they want
= With no runtime checks (direct memory write)
= While never segfaulting or breaking the tree

e Also build an iterator handing out pointers all over

impl<K, V> TreeMap<K, V> {
// Wildly unsafe
pub fn get mut (&mut self, key: &K) -> Option<émut V> { ... }

HW: FEEDBACK?

HW6 OUT

e Concurrency: making things go faster

e We give you: a slow, single-threaded version

e You make: multi-threaded versions in two ways

e Should be much less grappling with borrow checker
» But still a bit (The Rust Programming Language)

Start early, especially if you haven't tried
writing concurrent code before

MODELING
CONCURRENCY

MANY ASPECTS

e Parallelism and simultaneous execution
e Message-passing and channels

e Shared memory and locking

e Threads blocking/waiting

PROCESS CALCULUS

e Mathematical model of message passing

e Many flavors, developed in 19/70s and 1980s
s Communicating sequential processes (CSP)
= Communicating concurrent systems (CCS)
= Pi-calculus

e By Tony Hoare, Robin Milner, and many others

OUR VERSION

1. Simple arithemtic expressions
2. Channels: named pipes for communication
3. Processes: send/receive along channels

PROCESS CALCULUS:
GRAMMAR

ARITHMETIC EXPRESSIONS

num — (A O (A | LA 1 (A | 1A 2 1A |
"X" | "y" | "Z" | L.
exp = num | var | exp "+" exp | exp "*" exp | ...

e Arithmetic expressions with variables
e Examples of arithmetic expressions:

m 42

m 573

m 2+0+7zZ

CHANNELS

Chl’l — "A" | "B" | "C" | L.

e Addresses to send to/receive from
e Different names = different addresses
e We'll use two special channels:

= T:input channel into program

= O: output channel from program

PROCESSES

prc = "done" (* do nothing o
"make" chn "in" prc (* make new channel *)
"send" exp "->" chn "then" prc (* send a message *)
"recv" var "<-" chn "then" prc (* receilve a message ¥*)
""" exp "<" exp "]" prc (* run 1f guard true *)
prc "+" prc (* run this or that *)
prc "|" prc (* run 1n parallel *)

e Make new channel, send and receive along channel
e Combine several processes together

m Select between different processes

= Run processes in parallel

EXAMPLES (BLACKBOARD)

OPERATIONAL
SEMANTICS

MAIN SETUP

e Define how processesstep P — Q)

e New addition: each transition may have a label
e | abels model sending and receiving

» (A, n): send numn along channel A

= (A, n): receive numn from channel A
e Other steps: no label (silent transitions)

BLACKBOARD (OR WR6)

EXTENSION: RECURSION

WHY RECURSION?

e So far: finite number of steps
e Some processes live forever (e.g., servers)
e Extend the language with recursive processes

SINTAX

name = "P1" | "pP2" | "P3" | ... (* names of processes *)
prc = ...

| name (* process could be a name *)
def = name "=" prc (* definition of processes *)

e Add process names and recursive definitions

EXAMPLES

OPERATIONAL SEMANTICS

e Just add one more rule to unfold definitions...

A TINY GLIMPSE OF
ERLANG

JOE ARMSTRONG

e Passed away in 2019 :(
e [nvented Erlang while working for Ericsson
e Hugely influential views on computing

= Take alook at his thesis

= Or check out some of his talks

http://erlang.org/download/armstrong_thesis_2003.pdf
https://www.infoq.com/presentations/self-heal-scalable-system

PRINGIPLE 1: PROCESSES

e Take idea of process from OS
= Not threads: no shared memory space!
m Separate program into several processes
e Erlang: processes are cheap
= Can make millions of processes
m So-called “green threads”
e Rust: heavier, OS threads (can’t have so many)
= Used to have green threads, taken out

PRINCIPLE 2: ISOLATION

e Communicate only by message passing
e Afaultin one process should be contained
e Share nothing concurrency

= Also known as the Actor model

PRINCIPLE 3: LET IT CRASH

e Will never be able to eliminate all faults
e |nstead: plan for faults to happen
e [f aprocess hits an error, just crash it
= Don’t make things worse
e Let someone other process fix/restart

THE ERLANG LANGUAGE

e Designed for telecom applications
m Soft real-time, highly reliable
e Designed for processes that live forever
= Can swap in code updates live
e At the core: processes, messages, isolation

BIG IMPACT

e Runs Ericsson telecom switches

= Handles estimated 50% of all cell traffic

= OTP libraries, Open Telecom Protocol
e Runs Whatsapp and FB chat (previously)

= \Whatsapp: 50 employees for 900M users (2015)
e Many successful applications

= CouchDB, Riak, Elixir, ...

SPAWNING PROCESSES

e Just like in Rust: pass it a closure

SENDING MESSAGES

p 1d ! hello.
self () ! there.

e Asynchronous channels: send never blocks
e Send directly to process, not to specific channel

RECEIVING MESSAGES

dolphin () ->
receive
do a flip —->
10:format ("How about no?~n");

fish —>
1o0:format ("So long and thanks for all the fish!~n");
e
10:format ("Heh, we're smarter than you humans.~n")
end.

e Do acase analysis on received message
e Each process has one incoming queue, like a mailbox

JOE'S FAVORITE PROGRAM

e Universal Server: can turn into any another process

universal server() ->
receive
{become, New proc} ->
New proc ()
end.

e | owercase match on string, uppercase variable

https://joearms.github.io/published/2013-11-21-My-favorite-erlang-program.html

FACTORIAL SERVER

e Wait for message, respond with factorial

factorial server() ->
receive
{From, N} —>

From ! factorial (N),
factorial server ()
end.

factorial (0O) —-> 1;
factorial (N) -> N * factorial (N-1).

BECOMING FACTORIAL

e Turn a universal server into a factorial server

main () ->
univ pid = spawn (fun universal server/0),
univ pid ! {become, fun factorial server/0},
univ pid ! {self (), 50},
receive
Response —> Response
end.

e /0 means zero arguments (Erlang dynamically typed)

