LECTURE 23

Theory and Design of PL (CS 538)
April 15,2020

SHARED-STATE
CONCURRENCY IN
RUST: MUTEX

IN RUST. MUTEX

e Most common operations
" new: make a new mutex

m] ock:acquire lock, blocks if other thread has lock

let my mutex = Mutex::new(d);

// wait for the lock
let mut data 1nside = my mutex.lock () .unwrap();

// have the lock, write to value inside
*data 1nside = 06;

// check what value is now
println! ("my mutex = {}", *data 1inside);

WHY LOCK RETURNS RESULT?

e Error handlingis tricky in the presence of threads
e [f athread panics, no good solutions
m Kill all threads? But threads should be separate.
m Keep going? Panicking thread might have been in
the middle of some complicated operation.

LOCK POISONING

e Rust: if thread panics holding Mutex, It is poisoned
e [atercallstolock () willreturnErr (ptr)

e Signal: someone panicked while holding this lock
m \Were in critical section, but didn't finish
= May not be safe to enter critical section now

e Usually: you should justcall . 1ock () .unwrap ()

= “|f someone else panicked, I'm panicking too”
e Canget pointer into lock withptr.into inner.

WHAT ABOUT UNLOCKING?

e Most languages: need to unlock once done with lock
e Common bug: forgetting to unlock

= No one else can get the lock!
e |n Rust: locking a Mutex gives smart pointer

= Automatically unlocks when it is dropped

Ownership to the rescue!

FORCING UNLOCKING

e Sometimes, want to unlock a lock “early”
e Either close the scope, or call std::mem::drop

let my mutex = Mutex::new (D)
{ // start new scope
// walit for the lock

let mut data 1nside = my mutex.lock () .unwrap () ;

// holding the lock, write to value inside
*data 1nside = 06;

// explicit unlock: std::mem::drop(data inside);
} // or: scope ends, automatically unlocked here

// no longer holding lock here

WHO OWNS THE MUTEX?

e Mutex shared between threads, no single owner

let counter = Mutex::new(0);
let mut handles = vec!][];
for 1 1in 0..10 {
let handle = thread::spawn (move || { // move lock 1n
let mut num = counter.lock () .unwrap(); // acquire lock

*num += 1;

b)) s
handles.push (handle) ;

J

for handle i1n handles { handle.join(); }

e Fails: Mutex can’'t be owned by multiple threads!

ANOTHER TRY

e Use Rc to allow multiple owners of Mutex

let counter = Rc::new (Mutex::new(0)); // allow mutex to be shared
let mut handles = vec!|[];
for 1 i1n 0..10 {
let rc count = Rc::clone(&counter); // get a ref to the mutex
let handle = thread::spawn (move || {
let mut num = rc count.lock() .unwrap()

*num += 1;

b) g
handles.push (handle) ;

J

for handle i1in handles { handle.join(); }

e Compiler is not happy: “Rcisnot Sync”

SOLUTION: USE ARC

e Common pattern for using/sharing Mutex in Rust

let counter = Arc::new (Mutex::new(0)); // use atomic Rc
let mut handles = vec!][];
for 1 1n O0..10 {
let rc count = Arc::clone(&counter); // get a ref to the mutex
let handle = thread: :spawn (move || {
let mut num = rc count.lock() .unwrap()

*num += 1;

b) s
handles.push (handle) ;

)

for handle in handles { handle.join (), }

A BANK ACCOUNT, LOCKS

e Tweak bank account code from previous lecture

struct Account { balance: 132 };

impl Account ({
fn deposit (&mut self, amt: 132) { self.balance += amt; }

fn try withdraw (&mut self, amt: 132) -> Result<i32, &str>
1f self.balance < amt {
Err ("Insufficient funds.")
} else
self.balance -= amt;
Ok (self.balance)

A BANK ACCOUNT, LOCKS

e Wrap account in Mutex, share between clients

let acct = Account { balance: 100 };

let mutex = Mutex::new(acct); // wrap account in lock
let rc mutex = Arc::new(mutex) ; // owner 1 of mutex

let rc copy = Arc::clone(rc mutex); // owner 2 of mutex
thread: :spawn (move || {

let acct ptr = rc mutex.lock() .unwrap(); // try to get lock
acct.try withdraw(100); // got lock: try withdrawl

})

thread: :spawn (move || {
let acct ptr = rc copy.lock() .unwrap(); // try to get lock
acct.try withdraw(100); // got lock: try withdrawl

})

ANOTHER PRIMITIVE:
CONDVARS

CONDITION VARIABLES

e Used for waiting and signalling threads
e Thisis how condvars work:
1. T1 holds lock L and waits on condvar C
2. T1sleeps, L is auto unlocked
3. T2 can notify (one or all) threads waiting on C
4. T1wakesup and triesto grab L

let p
let g

SIGNALING A CONDVAR

e From std: :sync: :Condvar docs...

Arc: :new((Mutex: :new(false), Condvar::newf())):
Arc::clone (&p) ;

// Spawn a new thread, which will signal when it starts
thread: :spawn (move || {

b) s

let my lock = g.0;

let my cvar = qg.1;

let mut started = my lock.lock() .unwrap(); // grab lock
*started = true;

// We notify the condvar that the value has changed.
my cvar.notify one();

// lock released here (started out of scope)

WAITING ON A CONDVAR

e From std: :sync: :Condvar docs...

let p
let g

Arc: :new ((Mutex: :new(false), Condvar::newf()))

Arc::clone (&p) ;

// Spawn a new thread, which will signal when it starts
thread: :spawn (move || { ... });

let my lock

07
let my cvar 1

4

o.
o.
let mut started = my lock.lock() .unwrap(); // grab lock

// Spin: sleep-wake until flag 1is true
while !*started { started = my cvar.walt (started) .unwrap () ;

J

CONDVAR: PITFALLS

e Don't assume thread wakes up “right after” signal
= Maybe: many threads signaled, you are not first
= Maybe: “spurious” wakeups
m Always check if the wakeup is “for your thread”

e Waiting with multiple locks
= |n Rust: you probably don’t want to do this
= One lock will be released, but others still locked
= Can easily lead to deadlocks

A BANK ACCOUNT, CONDVARS

e Setup: one account under Mutex, one Condvar

let acct = Account { balance: 50 };

let rc acctl
let rc acctz
let rc cvarl
let rc cvar?

Arc: :new (Mutex: :new(false)) ;

Arc::clone(rc acctl);
Arc: :new (Condvar: :newi()) ;
Arc::clone(rc cvarl);

A BANK ACCOUNT, CONDVARS

e Firstclient: try to withdraw, wait if it can't

thread: :spawn (move || {
let mut acct ptr = rc.acctl.lock() .unwrap(); // try get lock
loop {
if acct ptr.try withdraw(125).1is ok () { // try withdraw
break;
} else

// not enough funds: release lock and sleep until notified
acct ptr = rc cvarl.wait (acct ptr) .unwrap();

A BANK ACCOUNT, CONDVARS

e Second client: make deposit, notify condvar

thread: :spawn (move || {
// try to get lock
let acct ptr = rc acctZ2.lock() .unwrap();

// got the lock, do deposit
acct ptr.deposit (100);

// notify (all) waiters
rc cvarzZ.notify all();

e Question: why notify all, instead of notify one?

MESSAGE PASSING
IN RUST

RECALL THE IDEA

e Threads interact by sending/receiving messages
e Make threads as modular as possible

= Limit all interaction to specific places

= No shared state, no data races
e Simplify error handling

= No mutexes, no poisoning

m Restart threads after errors

COMMUNICATE ONLY THROUGH CHANNELS

e Main abstraction: channels between threads

e Threads send/receive messages along channels
= Wait on messages (synchronous)
= Send and continue (asynchronous)

(A)SYNCHRONOUS CHANNELS

e Recelving messages: blocking or not?
= Recelve/try-receive

e Sending messages: blocking or not?
= Nonblocking: asynchronous channels
= Blocking: synchronous channels

e Also known as unbounded and bounded

ASYNCHRONOUS CHANNELS

e Found inmpsc: :channel

= Multiple producers
= Single consumer
e Pair of objects: transmitter and receiver
e Synchronous channelsinmpsc: :sync channel

CREATING A CHANNEL

e Construct a pair of endpoints
= Typically: tx for transmit, rx for receive

e Spawn thread and pass it one endpoint
= Usemove to transfer ownership of endpoint

fn main() {
let (tx, rx) = mpsc::channel () ; // set up channel pair
thread: :spawn (move || { // move tx end to child

let val = String::from("hi");
tx.send (val) ; // child sends message
b) s
}

TRANSMITTING END SENDS

e Sending returns aResult type

m Error if something goes wrong
= Example: transmit end already dropped (closed)
e Error handling: use unwrap to stop program if error

fn main() {
let (tx, rx) = mpsc::channel();

thread: :spawn (move || {
let val = String::from("hi");
tx.send (val) .unwrap () ; // panic 1f send fails
b) s
}

BLOCKING RECEIVE

e Blocking recv waits for a message to be delivered

fn main () {
let (tx, rx) = mpsc::channel();
thread: :spawn (move || {

let val = String::from("hi");
tx.send(val) .unwrap () ;

}) s

let received = rx.recv () .unwrap()
println! ("Got: {}", received);

J

NON-BLOCKING RECEIVE

 Non-blocking try recv returns immediately
e Returns errorin Result If there was no message

fn main() {
let (tx, rx) = mpsc::channel();

thread: :spawn(...);

let maybe recv = rx.try recv(); // don't panic 1f error
match maybe recv
Err (e) => println! ("Got nothing so far!");

Ok (v) => println! ("Got something: {}", v);
}
}

ITERATOR RECEIVE

e Can treatreceiving end as an iterator

fn main() {
let (tx, rx) = mpsc::channel();
thread: :spawn (move || {
let vals = vec![String::from("hi"), String::from("from"),

String::from("the"), String::from("thread"),
|
for val i1n vals { tx.send(val) .unwrap(), }

}) s

for received 1in rx {
println! ("Got: {}", received);

J

CHANNELS AND OWNERSHIP

e Channels transfer ownership of data
= Can't use sent data after sending it across
e Only types implementing Send can be sent

fn main () {
let (tx, rx) = mpsc::channel();
thread: :spawn (move || {

let val = String::from("hi");
tx.send(val) .unwrap () ;
println! ("val 1s {}", val);

g

let received = rx.recv () .unwrap/()

println! ("Got: {}", received);

)

// transfer ownership
// Not OK: can't use val!

// receive ownership
// OK: can use val

CLONING CHANNELS

e Clone transmit end to let multiple threads send
e Receiver will see all messages (in some order)

let (tx, rx) = mpsc::channel();
let tx copy = mpsc::Sender::clone(&tx); // copy transmit end
thread: :spawn (move || // make thread with tx
VAR
tx.send(val) .unwrap () ;
b) s
thread: :spawn (move || // make thread with tx copy
VAR

tx copy.send(val) .unwrap();

}) s

// receive messages
for received 1in rx { println! ("Got: {}", received); }

DROPPING CHANNELS

e Sending to dropped receiver returns None
e Recelving from dropped sender returns None
e Channel deallocated when both ends dropped

FANCIER CHANNELS

e Multiple producer, multiple consumer
e Selection (sending and receiving)
e Mostly in external crates (crossbeam)

EVEN MORE PRIMITIVES

ATOMICS

e Usually small cells (single int, bool, etc.)

e Operations guaranteed to be atomic
= Cannot be interruptible by other threads
» | oad, store, compare-and-swap, ...

e No need to lock when accessing
m |n fact, often used to implement locks

EXAMPLE: ATOMICS

e From std: :sync: :atomic docs...

fn main ()
let spinlock = Arc::new(AtomicUsize::new(l));
let spinlock clone = spinlock.clone();
// child "has lock" ==> spinlock = 1
let thread = thread: :spawn (move| |

// child "releases lock"
spinlock clone.store (0, Ordering::SeqgCst)

}) s

// spin: wait for child to "release lock"
while spinlock.load (Ordering::SeqgCst) != 0 {}

// continue onwards

BARRIERS

e Allows multiple threads to sync and continue
e Specify number of threads when constructing
e Each thread calls wait, blocks until all have called

EXAMPLE: BARRIERS

e From std: :sync: :Barrier docs...

// Barrier that waits for 10 threads
let barrier = Arc::new(Barrier::new(1l0));

for 1 1in 0..10 {

let ¢ = barrier.clone();
thread: :spawn (move| | {
println! ("here");

c.walit () ;
println! ("there");

b))

e Nointerleaving: all “here” before “there”

READER-WRITER LOCKS

e Souped-up version of Mutex
e |ike golden rules for references
= Multiple threads can read at the same time
= Only one thread can write (and no readers)
e Checked at runtime: panics if rules violated

EXAMPLE: RNLOCK

e From std: : sync: :RwLock docs...

let lock = RwlLock::new(b);

// many reader locks can be held at once
{

let r1 = lock.read () .unwrap/()

let r2 = lock.read() .unwrap/() ;
} // read locks are dropped at this poilnt

// only one write lock may be held at a time
{

let mut w = lock.write () .unwrap()
*wo+= 1;

} // write lock is dropped here

CRATES TO KNOW

STDLIB PROVIDES THE BASIC

e Aim s to keep stdlib small

e Many other crates relate to concurrency
= Often much fancier than stdlib
= Some will eventually be put into stdlib

CROSSBEAM

e Utilities for general-purpose concurrency
e Lock-free (non-blocking) concurrent collections
= Memory management for concurrent collections
e Better channels, better performance
= Multiple producer, multiple consumer
= Select between channels
e Scoped threads: use regular borrows instead of Arc

https://docs.rs/crossbeam

TORIO AND ASYNC-STD

e Libraries for “asynchronous” concurrency
= Concurrency on a single thread
e Running, switching, and waking up jobs
e Highly sophisticated libraries
e Few months ago: compiler support (“async/await”)
e We'll go into a lot more detail next week...

https://tokio.rs/
https://async.rs/

