
LECTURE 23
Theory and Design of PL (CS 538)

April 15, 2020

SHARED-STATE
CONCURRENCY IN

RUST: MUTEX

IN RUST: MUTEX
Most common operations
new: make a new mutex

lock: acquire lock, blocks if other thread has lock

let my_mutex = Mutex::new(5);

// wait for the lock
let mut data_inside = my_mutex.lock().unwrap();

// have the lock, write to value inside
*data_inside = 6;

// check what value is now
println!("my_mutex = {}", *data_inside);

WHY LOCK RETURNS RESULT?
Error handling is tricky in the presence of threads
If a thread panics, no good solutions

Kill all threads? But threads should be separate.
Keep going? Panicking thread might have been in
the middle of some complicated operation.

LOCK POISONING
Rust: if thread panics holding Mutex, it is poisoned
Later calls to lock() will return Err(ptr)
Signal: someone panicked while holding this lock

Were in critical section, but didn’t �nish
May not be safe to enter critical section now

Usually: you should just call .lock().unwrap()
“If someone else panicked, I’m panicking too”

Can get pointer into lock with ptr.into_inner.

WHAT ABOUT UNLOCKING?
Most languages: need to unlock once done with lock
Common bug: forgetting to unlock

No one else can get the lock!
In Rust: locking a Mutex gives smart pointer

Automatically unlocks when it is dropped

Ownership to the rescue!

FORCING UNLOCKING
Sometimes, want to unlock a lock “early”
Either close the scope, or call std::mem::drop

let my_mutex = Mutex::new(5);

{ // start new scope
 // wait for the lock
 let mut data_inside = my_mutex.lock().unwrap();

 // holding the lock, write to value inside
 *data_inside = 6;

 // explicit unlock: std::mem::drop(data_inside);
} // or: scope ends, automatically unlocked here

// no longer holding lock here

WHO OWNS THE MUTEX?
Mutex shared between threads, no single owner

Fails: Mutex can’t be owned by multiple threads!

let counter = Mutex::new(0);
let mut handles = vec![];
for i in 0..10 {
 let handle = thread::spawn(move || { // move lock in
 let mut num = counter.lock().unwrap(); // acquire lock
 *num += 1;
 });
 handles.push(handle);
}

for handle in handles { handle.join(); }

ANOTHER TRY
Use Rc to allow multiple owners of Mutex

Compiler is not happy: “Rc is not Sync”

let counter = Rc::new(Mutex::new(0)); // allow mutex to be shared
let mut handles = vec![];
for i in 0..10 {
 let rc_count = Rc::clone(&counter); // get a ref to the mutex
 let handle = thread::spawn(move || {
 let mut num = rc_count.lock().unwrap();
 *num += 1;
 });
 handles.push(handle);
}

for handle in handles { handle.join(); }

SOLUTION: USE ARC
Common pattern for using/sharing Mutex in Rust

let counter = Arc::new(Mutex::new(0)); // use atomic Rc
let mut handles = vec![];
for i in 0..10 {
 let rc_count = Arc::clone(&counter); // get a ref to the mutex
 let handle = thread::spawn(move || {
 let mut num = rc_count.lock().unwrap();
 *num += 1;
 });
 handles.push(handle);
}

for handle in handles { handle.join(); }

A BANK ACCOUNT, LOCKS
Tweak bank account code from previous lecture

struct Account { balance: i32 };

impl Account {
 fn deposit(&mut self, amt: i32) { self.balance += amt; }

 fn try_withdraw(&mut self, amt: i32) -> Result<i32, &str> {
 if self.balance < amt {
 Err("Insufficient funds.")
 } else {
 self.balance -= amt;
 Ok(self.balance)
 }
 }
}

A BANK ACCOUNT, LOCKS
Wrap account in Mutex, share between clients

let acct = Account { balance: 100 };
let mutex = Mutex::new(acct); // wrap account in lock
let rc_mutex = Arc::new(mutex); // owner 1 of mutex
let rc_copy = Arc::clone(rc_mutex); // owner 2 of mutex

thread::spawn(move || {
 let acct_ptr = rc_mutex.lock().unwrap(); // try to get lock
 acct.try_withdraw(100); // got lock: try withdrawl
})

thread::spawn(move || {
 let acct_ptr = rc_copy.lock().unwrap(); // try to get lock
 acct.try_withdraw(100); // got lock: try withdrawl
})

ANOTHER PRIMITIVE:
CONDVARS

CONDITION VARIABLES
Used for waiting and signalling threads
This is how condvars work:
1. T1 holds lock L and waits on condvar C
2. T1 sleeps, L is auto unlocked
3. T2 can notify (one or all) threads waiting on C
4. T1 wakes up and tries to grab L

SIGNALING A CONDVAR
From std::sync::Condvar docs…

let p = Arc::new((Mutex::new(false), Condvar::new()));
let q = Arc::clone(&p);

// Spawn a new thread, which will signal when it starts
thread::spawn(move || {
 let my_lock = q.0;
 let my_cvar = q.1;
 let mut started = my_lock.lock().unwrap(); // grab lock
 *started = true;

 // We notify the condvar that the value has changed.
 my_cvar.notify_one();
}); // lock released here (started out of scope)

WAITING ON A CONDVAR
From std::sync::Condvar docs…

let p = Arc::new((Mutex::new(false), Condvar::new()));
let q = Arc::clone(&p);

// Spawn a new thread, which will signal when it starts
thread::spawn(move || { ... });

let my_lock = p.0;
let my_cvar = p.1;

let mut started = my_lock.lock().unwrap(); // grab lock

// Spin: sleep-wake until flag is true
while !*started { started = my_cvar.wait(started).unwrap(); }

CONDVAR: PITFALLS
Don’t assume thread wakes up “right after” signal

Maybe: many threads signaled, you are not �rst
Maybe: “spurious” wakeups
Always check if the wakeup is “for your thread”

Waiting with multiple locks
In Rust: you probably don’t want to do this
One lock will be released, but others still locked
Can easily lead to deadlocks

A BANK ACCOUNT, CONDVARS
Setup: one account under Mutex, one Condvar

let acct = Account { balance: 50 };

let rc_acct1 = Arc::new(Mutex::new(false));
let rc_acct2 = Arc::clone(rc_acct1);
let rc_cvar1 = Arc::new(Condvar::new());
let rc_cvar2 = Arc::clone(rc_cvar1);

A BANK ACCOUNT, CONDVARS
First client: try to withdraw, wait if it can’t

thread::spawn(move || {
 let mut acct_ptr = rc.acct1.lock().unwrap(); // try get lock
 loop {
 if acct_ptr.try_withdraw(125).is_ok() { // try withdraw
 break;
 } else {
 // not enough funds: release lock and sleep until notified
 acct_ptr = rc_cvar1.wait(acct_ptr).unwrap();
 }
 }
});

A BANK ACCOUNT, CONDVARS
Second client: make deposit, notify condvar

Question: why notify all, instead of notify one?

thread::spawn(move || {
 // try to get lock
 let acct_ptr = rc_acct2.lock().unwrap();

 // got the lock, do deposit
 acct_ptr.deposit(100);

 // notify (all) waiters
 rc_cvar2.notify_all();
});

MESSAGE PASSING
IN RUST

RECALL THE IDEA
Threads interact by sending/receiving messages
Make threads as modular as possible

Limit all interaction to speci�c places
No shared state, no data races

Simplify error handling
No mutexes, no poisoning
Restart threads after errors

COMMUNICATE ONLY THROUGH CHANNELS
Main abstraction: channels between threads
Threads send/receive messages along channels

Wait on messages (synchronous)
Send and continue (asynchronous)

(A)SYNCHRONOUS CHANNELS
Receiving messages: blocking or not?

Receive/try-receive
Sending messages: blocking or not?

Nonblocking: asynchronous channels
Blocking: synchronous channels

Also known as unbounded and bounded

ASYNCHRONOUS CHANNELS
Found in mpsc::channel

Multiple producers
Single consumer

Pair of objects: transmitter and receiver
Synchronous channels in mpsc::sync_channel

CREATING A CHANNEL
Construct a pair of endpoints

Typically: tx for transmit, rx for receive

Spawn thread and pass it one endpoint
Use move to transfer ownership of endpoint

fn main() {
 let (tx, rx) = mpsc::channel(); // set up channel pair

 thread::spawn(move || { // move tx end to child
 let val = String::from("hi");
 tx.send(val); // child sends message
 });
}

TRANSMITTING END SENDS
Sending returns a Result type

Error if something goes wrong
Example: transmit end already dropped (closed)

Error handling: use unwrap to stop program if error

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap(); // panic if send fails
 });
}

BLOCKING RECEIVE
Blocking recv waits for a message to be delivered

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap();
 });

 let received = rx.recv().unwrap();
 println!("Got: {}", received);
}

NON-BLOCKING RECEIVE
Non-blocking try_recv returns immediately

Returns error in Result if there was no message

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(...);

 let maybe_recv = rx.try_recv(); // don't panic if error
 match maybe_recv {
 Err(e) => println!("Got nothing so far!");
 Ok(v) => println!("Got something: {}", v);
 }
}

ITERATOR RECEIVE
Can treat receiving end as an iterator

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let vals = vec![String::from("hi"), String::from("from"),
 String::from("the"), String::from("thread"),
];
 for val in vals { tx.send(val).unwrap(); }
 });

 for received in rx {
 println!("Got: {}", received);
 }
}

CHANNELS AND OWNERSHIP
Channels transfer ownership of data

Can’t use sent data after sending it across
Only types implementing Send can be sent

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");
 tx.send(val).unwrap(); // transfer ownership
 println!("val is {}", val); // Not OK: can't use val!
 });

 let received = rx.recv().unwrap(); // receive ownership
 println!("Got: {}", received); // OK: can use val
}

CLONING CHANNELS
Clone transmit end to let multiple threads send
Receiver will see all messages (in some order)

let (tx, rx) = mpsc::channel();
let tx_copy = mpsc::Sender::clone(&tx); // copy transmit end
thread::spawn(move || { // make thread with tx
 // ...
 tx.send(val).unwrap();
});
thread::spawn(move || { // make thread with tx_copy
 // ...
 tx_copy.send(val).unwrap();
});

// receive messages
for received in rx { println!("Got: {}", received); }

DROPPING CHANNELS
Sending to dropped receiver returns None
Receiving from dropped sender returns None
Channel deallocated when both ends dropped

FANCIER CHANNELS
Multiple producer, multiple consumer
Selection (sending and receiving)
Mostly in external crates (crossbeam)

EVEN MORE PRIMITIVES

ATOMICS
Usually small cells (single int, bool, etc.)
Operations guaranteed to be atomic

Cannot be interruptible by other threads
Load, store, compare-and-swap, …

No need to lock when accessing
In fact, often used to implement locks

EXAMPLE: ATOMICS
From std::sync::atomic docs…

fn main() {
 let spinlock = Arc::new(AtomicUsize::new(1));
 let spinlock_clone = spinlock.clone();

 // child "has lock" ==> spinlock = 1
 let thread = thread::spawn(move|| {
 // child "releases lock"
 spinlock_clone.store(0, Ordering::SeqCst);
 });
 // spin: wait for child to "release lock"
 while spinlock.load(Ordering::SeqCst) != 0 {}

 // continue onwards
}

BARRIERS
Allows multiple threads to sync and continue
Specify number of threads when constructing
Each thread calls wait, blocks until all have called

EXAMPLE: BARRIERS
From std::sync::Barrier docs…

No interleaving: all “here” before “there”

// Barrier that waits for 10 threads
let barrier = Arc::new(Barrier::new(10));

for i in 0..10 {
 let c = barrier.clone();
 thread::spawn(move|| {
 println!("here");
 c.wait();
 println!("there");
 }));
}

READER-WRITER LOCKS
Souped-up version of Mutex
Like golden rules for references

Multiple threads can read at the same time
Only one thread can write (and no readers)

Checked at runtime: panics if rules violated

EXAMPLE: RWLOCK
From std::sync::RwLock docs…

let lock = RwLock::new(5);

// many reader locks can be held at once
{
 let r1 = lock.read().unwrap();
 let r2 = lock.read().unwrap();
} // read locks are dropped at this point

// only one write lock may be held at a time
{
 let mut w = lock.write().unwrap();
 *w += 1;
} // write lock is dropped here

CRATES TO KNOW

STDLIB PROVIDES THE BASIC
Aim is to keep stdlib small
Many other crates relate to concurrency

Often much fancier than stdlib
Some will eventually be put into stdlib

Utilities for general-purpose concurrency
Lock-free (non-blocking) concurrent collections

Memory management for concurrent collections
Better channels, better performance

Multiple producer, multiple consumer
Select between channels

Scoped threads: use regular borrows instead of Arc

CROSSBEAM

https://docs.rs/crossbeam

 AND
Libraries for “asynchronous” concurrency

Concurrency on a single thread
Running, switching, and waking up jobs
Highly sophisticated libraries
Few months ago: compiler support (“async/await”)
We’ll go into a lot more detail next week…

TOKIO ASYNC-STD

https://tokio.rs/
https://async.rs/

