
LECTURE 22
Theory and Design of PL (CS 538)

April 13, 2020

SHARED-STATE
CONCURRENCY

IDEA: IT’S GOOD TO SHARE
All threads can modify shared data
Bene�ts

Threads can work on data in place
Big savings if the shared data is big
One, consistent view of shared data

Drawbacks
Not always safe to interrupt threads
Need to prevent data races

CRITICAL SECTIONS
All parts of code accessing shared piece of data
Only one thread allowed in section at a time

Otherwise: possible race condition
Other threads must wait (“block”) until safe to enter

A BANK ACCOUNT
Bank account tracks current account balance
Operations to deposit/withdrawn money

struct Account { balance: i32 };

impl Account {
 fn deposit(&mut self, amt: i32) { /* ... */ }

 fn withdraw(&mut self, amt: i32) {
 if self.balance < amt {
 println!("Insufficient funds.");
 } else {
 self.balance -= amt;
 }
 }
}

WHAT COULD GO WRONG?
Suppose acct: Account has balance 100

Suppose two threads call acct.withdraw(75)
Interleaving may cause negative balance
1. T1 checks if balance is enough: OK
2. Before deduct balance, T2 runs
3. T2 checks if balance is enough: OK
4. T1 deducts 75: balance is 25
5. T2 deducts 75: balance is -25

LOCKS (MUTEXES)
Main tool to enforce critical sections: locks

Threads can acquire or release locks
Only one thread can hold a lock at a time

If T1 tries to acquire lock held by T2, it has to wait
until the lock is released by T2

Prevent data races by carefully using locks

A BANK ACCOUNT, BUT SAFER
Following code gives the idea

Note: not real Rust code (stay tuned)

struct Account { balance: i32, mutex: Mutex };

impl Account {
 fn withdraw(&mut self, amt: i32) {
 self.mutex.get_lock();
 if self.balance < amt {
 println!("Insufficient funds.");
 } else {
 self.balance -= amt;
 }
 self.mutex.unlock();
 }
}

WHY DOES THIS WORK?
Only one thread can get the lock
If other thread tries to get lock, it must wait (block)
Result: thread runs withdraw with no interruptions

Programmer doesn’t pick which thread goes �rst

LOCKING DISCIPLINE
More locks = more problems
Programmer must coordinate how threads use locks

Which locks to acquire, when and where
What order to acquire locks
When and where to release locks

Speci�ed by programmer, not checked by compiler

EXAMPLES
“When reading/writing, must hold global lock”

Strongly limits concurrency
“When reading/writing x, must hold lock for x”

What if you need operate on two variables?
Real schemes are usually much more complicated

MANY BUGS ARE POSSIBLE
Too little locking or forget to take lock?

Data races and unpredictable behavior
Too much locking?

Lots of threads waiting, little concurrency
Forget to release lock?

Waiting threads will block forever

MESSAGE-PASSING
CONCURRENCY

IDEA: SHARING IS A BAD IDEA
Don’t share data between threads

Each thread operates on private data only
Threads send/receive messages

Bene�ts
All interaction con�ned to thread input queues
No sharing = no data races = no manual locks

Drawbacks
Inef�cient if we need to send lots of data
Harder to synchronize, no common view of data

A BANK ACCOUNT, MESSAGE PASSING
Idea: Clients send withdrawl messages
Fancier: Clients can have message queues too

struct Client { the_acct: &mut Account };

impl Client {
 fn withdraw(&self, amt: i32) {
 the_acct.send_withdraw(amt);
 }
}

A BANK ACCOUNT, MESSAGE PASSING
Idea: give Account a message queue

Again: not real Rust code (stay tuned)

enum AcctMsg { Withdraw(i32), // ... other messages ... }
struct Account { balance: i32, msg: VecDeque<AcctMsg> };

impl Account {
 fn send_withdraw(&mut self, amt: i32) {
 self.msg.push_back(Withdraw(amt));
 }
 fn run_acct(&mut self) {
 loop {
 if let Some(Withdraw(amt)) = self.msg.pop_front() {
 if self.balance < amt {
 println!("Insufficient funds.");
 } else { self.balance -= amt; }
 } } } }

WHAT’S THE POINT?
Account and Clients run in separate threads
Account processes messages one at a time

Single thread: no overlapping withdraws!
Synchronization needed only at message queue

If two clients send msgs, update queue correctly
Reduce and restrict shared state

As much as possible: run logic in a single thread

CHANNELS
Central abstraction for message passing
Goes from thread(s) to other thread(s)
Messages might arrive in any order
Receiver sees a single stream of messages

CHANNEL OPERATIONS
Each thread can send or receive message via channel
Synchronous channels

Receiving waits until something arrives (blocking)
Asynchronous channels

Try-receive: does not block if nothing incoming
Select: wait for msg. from any of these channels

DEADLOCK

CIRCULAR WAIT
All threads blocked waiting for other threads
Shared-state example

T1: take lock x, take lock y
T2: take lock y, take lock x
T1 takes x and T2 takes y: Deadlock!

Obvious here, but harder with more locks/threads…
Can happen under message-passing too

Two threads both waiting for message

DINING PHILOSOPHERS
N philosophers (threads), sitting in a circle
N forks (locks), one between every 2 philosophers
Philosophers think, then eat, then think, …
To eat: philosopher takes left fork, then right fork
If all philosophers take left fork: stuck!

HOW TO FIX?
One special philosopher: take right fork, then left
Other philosophers: take left fork, then right
Break the symmetry between threads
In general: �xing deadlocks is very challenging

RUST THREADS

SPAWNING THREADS
Rust function: thread::spawn

Caller passes in a closure for new thread to run
Terminology: caller is parent, new thread is child

fn main() {
 thread::spawn(|| { // begin closure (child runs this)
 for i in 1..10 {
 println!("hi number {} from the spawned thread!", i);
 // do some stuff, sleep for 10 seconds, ...
 }
 }); // end closure
}

RETURNS IMMEDIATELY
Returns a handle, parent continues running
Child thread may not �nish before parent

fn main() {
 let child = thread::spawn(|| { // start child
 for i in 1..10 {
 println!("hi number {} from the spawned thread!", i);
 // do some stuff, sleep for 10 seconds, ...
 } });

 // parent thread continues
 for i in 1..5 {
 println!("hi number {} from the main thread!", i);
 // do some stuff, sleep for 10 seconds, ...
 }
}

JOINING THREADS
join: wait for threads to �nish

Call with handle from spawn to wait for that thread

fn main() {
 let child = thread::spawn(|| {
 for i in 1..10 {
 println!("hi number {} from the spawned thread!", i);
 // do some stuff, sleep for 10 seconds, ...
 } });

 for i in 1..5 {
 println!("hi number {} from the main thread!", i);
 // do some stuff, sleep for 10 seconds, ...
 }

 child.join(); // wait for child to finish
}

THREAD ENVIRONMENT
Common case: parent wants to put data into thread
Mechanism: closure mentions external variables

Must move or clone environment into each thread

let env_var: String = String::from("foo");
let child_one = thread::spawn(|| {
 // Not OK: env_var doesn't live long enough
 let my_var = env_var;
 println!("Child 1 printing: {}", my_var);
});

let child_two = thread::spawn(move || {
 // OK: thread takes ownership of env_var
 let my_var = env_var;
 println!("Child 2 printing: {}", my_var);
});

EACH DATA HAS ONE OWNER
Compiler: variable moved into at most one thread

let mut mut_var = String::new("foo");
let child_one = thread::spawn(move || {
 // OK: thread takes ownership of mut_var
 mut_var.push_str(" and bar");
});

let child_two = thread::spawn(move || {
 // Not OK: can't move mut_var again!
 mut_var.push_str(" and baz");
});

Rust compiler prevents data races!

OTHER RACES POSSIBLE
Many resources not covered by aliasing rules

Printing lines to screen
Reading/writing from �le system
Sending/receiving network packets

Races in other effects not controlled by Rust

WHAT ABOUT SHARING?
Can’t share mutable access to same data
But what about sharing immutable access?
Does this work?

let env_var = String::new("foo");
let child_one = thread::spawn(|| {
 // Thread borrows env_var immutably
 println!("Child 1 says: {}", env_var);
});

let child_two = thread::spawn(|| {
 // Thread borrows env_var immutably
 println!("Child 2 says: {}", env_var);
});

DOESN’T LIVE LONG ENOUGH
Parent may �nish early, deallocate env_var
Child threads may hold dangling reference…
Try: use Rc to share ownership

let env_var_old = Rc::new(String::new("foo"));
let env_var_one = Rc::clone(&env_var_old);
let env_var_two = Rc::clone(&env_var_old);
let child_one = thread::spawn(move || {
 println!("Child 1 says: {}", env_var_one);
});

let child_two = thread::spawn(move || {
 println!("Child 2 says: {}", env_var_two);
});

// String will live as long as one Rc is still alive

STILL NOT HAPPY
“Rc doesn’t implement Sync, try Arc”
Now it works. But what was the problem?

let env_var_old = Arc::new(String::new("foo"));
let env_var_one = Arc::clone(&env_var_old);
let env_var_two = Arc::clone(&env_var_old);
let child_one = thread::spawn(move || {
 println!("Child 1 says: {}", env_var_one);
});

let child_two = thread::spawn(move || {
 println!("Child 2 says: {}", env_var_two);
});

TRAITS FOR THREAD-
SAFETY

THREAD-SAFETY
Thread safe data: safe to share between threads
Interface and internals must be carefully designed

Multiple threads may operate on same data
Threads may call different operations
Resumed/paused/interrupted at any time

CHECKED BY RUST COMPILER
By default, custom types are not thread safe

If you share between threads, bad stuff happens
Much of standard library is thread safe

Vec, HashMap, String, …

Rust compiler complains if you don’t use
thread safe libraries with threads!

THREAD-SAFETY TRAITS
Tracked at the type level through traits
Send trait: can be sent to another thread

Sync trait: can be shared by multiple threads

Marker traits: no required implementations
Can’t implement in safe Rust, essentially a promise

Examples
Rc doesn’t implement Send or Sync: not safe!

Arc implements Send and Sync: thread safe!

