LECTURE 22

Theory and Design of PL (CS 538)
April 13, 2020

SHARED-STATE
CONCURRENCY

IDEA: IT°S GOOD TO SHARE

e All threads can modify shared data
e Benefits
= Threads can work on data in place
m Big savings if the shared data is big
= One, consistent view of shared data
e Drawbacks
= Not always safe to interrupt threads
= Need to prevent data races

CRITICAL SECTIONS

e All parts of code accessing shared piece of data
e Only one thread allowed in section at a time
= Otherwise: possible race condition
e Other threads must wait (“block”) until safe to enter

A BANK ACCOUNT

e Bank account tracks current account balance
e Operations to deposit/withdrawn money

struct Account { balance: 132 };

impl Account
fn deposit (&émut self, amt: 132) { /* ... */ }

fn withdraw (&mut self, amt: 132) {
1f self.balance < amt {
println! ("Insufficient funds.");
} else {
self.balance -= amt;

J

WHAT COULD G0 WRONG?

e Suppose acct: Account hasbalance 100
e Suppose two threads call acct.withdraw (75)

e [nterleaving may cause negative balance
1. T1 checks if balance is enough: OK
2. Before deduct balance, T2 runs
3. T2 checks if balance is enough: OK
4.T1 deducts /75: balanceis 25
5. T2 deducts 75: balanceis -25

LOCKS (MUTEXES)

e Main tool to enforce critical sections: locks
= Threads can acquire or release locks
e Only one thread can hold alock at a time
= |[f T1triesto acquire lock held by T2, it has to wait
until the lock is released by T2
e Prevent data races by carefully using locks

A BANK ACCOUNT, BUT SAFER

e Following code gives the idea
= Note: not real Rust code (stay tuned)

struct Account { balance: 132, mutex: Mutex };

impl Account
fn withdraw (&mut self, amt: 132) {
self .mutex.get lock();
1f self.balance < amt {

println! ("Insufficient funds.");
} else {
self.balance —-= amt;

J

self . mutex.unlock () ;

WHY DOES THIS WORK?

e Only one thread can get the lock
e |f other thread tries to get lock, it must wait (block)
e Result: thread runs withdraw with no interruptions

» Programmer doesn’t pick which thread goes first

LOCKING DISCIPLINE

e More locks = more problems

e Programmer must coordinate how threads use locks
= \Which locks to acquire, when and where
= \What order to acquire locks
= \When and where to release locks

e Specified by programmer, not checked by compiler

EXAMPLES

e “When reading/writing, must hold global lock”
= Strongly limits concurrency
e “When reading/writing x, must hold lock for x”
= \What if you need operate on two variables?
e Real schemes are usually much more complicated

MANY BUGS ARE POSSIBLE

e Too little locking or forget to take lock?

m Dataraces and unpredictable behavior
e Too much locking?

m | ots of threads waiting, little concurrency
e Forget torelease lock?

= \Waiting threads will block forever

MESSAGE-PASSING
CONCURRENCY

IDEA: SHARING IS A BAD IDEA

e Don't share data between threads
m EFach thread operates on private data only
= Threads send/receive messages
e Benefits
= All interaction confined to thread input queues
= No sharing = no data races = no manual locks
e Drawbacks
= |nefficient if we need to send lots of data
= Harder to synchronize, no common view of data

A BANK ACCOUNT, MESSAGE PASSING

e |dea: Clients send withdrawl messages
e Fancier: Clients can have message queues too

struct Client { the acct: &mut Account };

impl Client {
fn withdraw(&self, amt: 132) {
the acct.send withdraw (amt) ;

J
J

A BANK ACCOUNT, MESSAGE PASSING

e |dea: give Account a message queue
= Again: not real Rust code (stay tuned)

enum AcctMsg { Withdraw(i32), // ... other messages ... }
struct Account { balance: 132, msg: VecDeque<AcctMsg> };

impl Account
fn send withdraw (&mut self, amt: 132) {
self.msg.push back (Withdraw (amt)) ;

J

fn run acct (&mut self) {

loop {
1f let Some (Withdraw(amt)) = self.msg.pop front() {
1f self.balance < amt {
println! ("Insufficient funds.");

} else { self.balance -= amt; }

by

WHAT'S THE POINT?

e Account and Clients run in separate threads
e Account processes messages one at atime
= Single thread: no overlapping withdraws!
e Synchronization needed only at message queue
= |[f two clients send msgs, update queue correctly
e Reduce and restrict shared state
= As much as possible: run logic in a single thread

CHANNELS

e Central abstraction for message passing

e Goes from thread(s) to other thread(s)

e Messages might arrive in any order

e Receiver sees a single stream of messages

CHANNEL OPERATIONS

e Each thread can send or receive message via channel
e Synchronous channels

m Receiving waits until something arrives (blocking)
e Asynchronous channels

= Try-receive: does not block if nothing incoming

m Select: wait for msg. from any of these channels

DEADLOCK

CIRCULAR WAIT

e All threads blocked waiting for other threads
e Shared-state example
m T1:take lock x, take lock y
m T2:take locky, take lock x
= T1 takes xand T2 takes y: Deadlock!
e Obvious here, but harder with more locks/threads...
e Can happen under message-passing too
= Two threads both waiting for message

DINING PHILOSOPHERS

e N philosophers (threads), sitting in a circle

e N forks (locks), one between every 2 philosophers
e Philosophers think, then eat, then think, ...

e To eat: philosopher takes left fork, then right fork
e If all philosophers take left fork: stuck!

HOW T0 FIX?

e One special philosopher: take right fork, then left
e Other philosophers: take left fork, then right

e Break the symmetry between threads

e |[n general: fixing deadlocks is very challenging

RUST THREADS

SPAWNING THREADS

e Rust function: thread: : spawn

m Caller passes in a closure for new thread to run
e Terminology: caller is parent, new thread is child

fn main () {
thread::spawn(|| { // begin closure (child runs this)
for 1 in 1..10 {
println! ("hli number {} from the spawned thread!", 1);

// do some stuff, sleep for 10 seconds, ...

J

' Y // end closure

RETURNS IMMEDIATELY

e Returns a handle, parent continues running
e Child thread may not finish before parent

fn main() {
let child = thread::spawn(|| { // start child
for 1 in 1..10 {
println! ("hi number {} from the spawned thread!", 1);

// do some stuff, sleep for 10 seconds,

Fob) s

// parent thread continues

for 1 1in 1..5 {
println! ("hli number {} from the main thread!", 1);
// do some stuff, sleep for 10 seconds,

J

JOINING THREADS

e 7o1in: waitfor threads to finish
e Call with handle from spawn to wait for that thread

fn main () {
let child = thread::spawn(|| {
for 1 in 1..10 {
println! ("hi number {} from the spawned thread!", 1);

// do some stuff, sleep for 10 seconds,

Fob) s

for 1 1n 1..5 {
println! ("hli number {} from the main thread!", 1);
// do some stuff, sleep for 10 seconds,

J

child.join(); // wait for child to finish
}

THREAD ENVIRONMENT

e Common case: parent wants to put data into thread
e Mechanism: closure mentions external variables
= Must move or clone environment into each thread

let env var: String = String::from("foo");
let child one = thread::spawn(||
// Not OK: env var doesn't live long enough
let my var = env var;
println! ("Child 1 printing: {}", my var);
b) s

let child two = thread::spawn(move ||
// OK: thread takes ownership of env var
let my var = env var;
println! ("Child 2 printing: {}", my var);
) s

EACH DATA HAS ONE OWNER

e Compiler: variable moved into at most one thread

let mut mut var = String::new("foo");

let child one = thread::spawn(move || ({
// OK: thread takes ownership of mut var
mut var.push str (" and bar");

b) g

let child two = thread::spawn(move || ({
// Not OK: can't move mut var again!
mut var.push str (" and baz");

}) s

Rust compiler prevents data races!

OTHER RACES POSSIBLE

e Many resources not covered by aliasing rules
= Printing lines to screen
= Reading/writing from file system
s Sending/receiving network packets

e Races in other effects not controlled by Rust

WHAT ABOUT SHARING?

e Can’t share mutable access to same data
e But what about sharing immutable access?
e Does this work?

let env var = String::new("foo");

let child one = thread::spawn(||
// Thread borrows env var immutably
println! ("Child 1 says: {}", env var);

}) s

let child two = thread::spawn(||
// Thread borrows env var immutably
println! ("Child 2 says: {}", env var);

b) s

DOESN'T LIVE LONG ENOUGH

e Parent may finish early, deallocate env var

e Child threads may hold dangling reference...
e Try: use Rc to share ownership

let env var old = Rc::new(String::new("foo"));

let env var one = Rc::clone(&env var old);

let env var two = Rc::clone(&env var old);

let child one = thread::spawn (move ||
println! ("Child 1 says: {}", env var one);

}) s

let child two = thread::spawn (move || {
println! ("Child 2 says: {}", env var two);

b) s

// String will live as long as one Rc 1s still alive

STILL NOT HAPPY

e “Rcdoesn’t implement Sync, try Arc”
e Now it works. But what was the problem?

let env var old = Arc::new(String::new("foo"));
let env var one = Arc::clone(&env var old);

let env var two = Arc::clone (&env var old);

let child one = thread::spawn (move ||
println! ("Child 1 says: {}", env var one);

}) s

let child two = thread::spawn (move ||
println! ("Child 2 says: {}", env var two);

}) s

TRAITS FOR THREAD-
SAFETY

THREAD-SAFETY

e Thread safe data: safe to share between threads

e Interface and internals must be carefully designed
= Multiple threads may operate on same data
= Threads may call different operations
= Resumed/paused/interrupted at any time

CHECKED BY RUST COMPILER

e By default, custom types are not thread safe

= |[f you share between threads, bad stuff happens
e Much of standard library is thread safe

= \Vec, HashMap, String, ...

Rust compiler complains if you don’t use
thread safe libraries with threads!

THREAD-SAFETY TRAITS

e Tracked at the type level through traits
m Send trait; can be sent to another thread

m Sync trait: can be shared by multiple threads

e Marker traits: no required implementations

= Can’'t implement in safe Rust, essentially a promise
e Examples

= Rc doesn’'t implement Send or Sync: not safe!

» Arc Implements Send and Sync: thread safe!

