LECTURE 21

Theory and Design of PL (CS 538)
April 08, 2020

PARALLELISM

WHAT IS PARALLELISM?

e Multiple tasks executing at same instant in time
= Think: multicore, datacenter, supercomputer
e Property of actual execution on hardware
= Not property of language/program

WHY PARALLELISM?

1. We want to go really fast!

2. We're getting more and more cores on CPUs
e CPU clocks aren't getting much faster

3. Custom chips becoming more common

o GPUs, ASICs, TPUs, ...

EXAMPLES

DATA PARALLELISM

e Divide up data into a bunch of pieces
= Useful when you have a lot of homogeneous data
= |[mage data, log files, training examples, ...

e Process parts independently, usually in same way

o Wait for tasks to finish, collect results

e Examples: MapReduce, Hadoop

TASK PARALLELISM

e Divide up task into a bunch of pieces

e Try torun tasks at the same time

e Complications
= Some tasks may depend on other tasks
= Often unclear how to split up a complex task
= Scheduling tasks makes a big difference

BIT-LEVEL

e |[nstruction-set architecture level
e Use bigger instructions to operate on more data
e Get more done with every instruction
e Examples
= 16-bit, 32-bit, 64-bit microprocessors
» SIMD: single instruction, multiple data

INSTRUCTION-LEVEL

e |nstruction-set architecture level
e Run instructions themselves in parallel

m Each clock cycle, execute multiple instructions
e Common in all modern processors

= Pipelining

= Gain when instructions don’t interfere

MULTICORE

e Package several processors into one
o 4- 8-, 16-, 32-cores are not unusual
e Each coreis almost a separate CPU

GPUS AND ASICS

e Application Specific Integrated Circuits
e Specialized chips for specialized tasks

= Really, really efficient for certain tasks
e Examples

m GPUs: processing graphics

s TPUs: training neural networks

= ASICs: mining bitcoin

DISTRIBUTED COMPUTING

e Geographically spread-out computers

e Grid computing: borrow time from idle computers
s SETI@Home, protein folding, ...

e Datacenters

SUPERCOMPUTERS

e Really, really big computers
= Footprint of several basketball courts
= Hundreds of miles of cabling
e Weather prediction, computational biology, ...
e Massively parallel
= Millions, or even tens of millions of “cores”

CHALLENGES

DATA RACES

e Two requirements:
1. Multiple tasks read/write same piece of data
2. Final state depends on the interleaving
e Thisis almost never what you want!
= |[nterleaving is not under programmer control
m Data race: result not under programmer control

EXAMPLE

e Final result dependsonwheny := Xisexecuted
= Earlier: yendsup O
m [ater: Yendsup 1
e Fasy to see in small programs, harder in big programs

"HEISENBUGS™

e Unpredictable behavior
e Sometimes show up, sometimes don't
e Very hard to reproduce and debug

"We're hitting this catastrophic bug every
3 months or so. Can you fix it?

(IN)FAMOUS RACE CONDITIONS

e Many, many security vulnerabilities due to races
e Therac-25 radiation therapy machine

m Serious injuries to patients
e GE energy management system

m Caused Northeast blackout of 2003
= Two day outage, more than 50 million affected

FEEDING THE CORES

e When some steps get faster, bottlenecks shift
= “Amdahl’s [aw”
e How to effectively use cores?
= |f they sit idle, waste time
m 4 cores? 16 cores? 128 cores?
e How to get data to where it is needed?
= Communication takes time
e How to synchronize?

COMPILER AND HARDWARE ARE OUT TO
GET YOU

e Compiler may reorder instructions to optimize

e Hardware also reorders instructions to go fast

e Rules for which reorderings are OK is... not clear
s Formally captured by a “memory model”

e Most languages use the “C11 memory model”
= C11 memory model not really formalized

FORR-JOIN MODEL

EXPRESS PARALLELISM IN PL

e Programmer knows something about the data
e Can help compiler decide how to divide tasks
e Indicate parts that can safely be done in parallel

FORKING

e Parent thread spawns child to execute some function
e Parent thread doesn't wait for child, keeps going
e Child executes, hopefully in parallel with parent

JOINING

e Wait for another thread to finish before continuing
= “Block on another thread”

e Example: wait until all child tasks are done
= Need to synchronize to collect results

IN RUST: RAYON

DATA PARALLELISM CRATE

e Name refers to Cilk: C/C++ parallel extensions
e Simple interface to write data-parallel stuff
e Often:change into itertointo par iter

EXAMPLE: SEQUENTIAL

e Suppose we have:
= List of a bunch of shops
= |ist of products we care about
e \Want to compute: sum of prices across all stores

let total = shops.iter ()
.map (| store| store.compute price (&products))
.sumf() ;

EXAMPLE: PARALLEL

e Using Rayon: easy to make this computation parallel
e Each task shares products, but read-only: no races!

let total = shops.par 1ter ()
.map (| store| store.compute price (&products))
.sumf() ;

BUILDING BLOCK: JOIN

e Run two closures in parallel, wait until done

fn quick sort<T:PartialOrd+Send>(v: &mut [T]) {
if v.len() > 1 {
let mid = partition(v); // pick pivot index, partition v
let (lo, hi)
rayon: :join (

= v.split at mut (mid);
| quick sort (lo),
|

|
| quick sort (hi));

REF RULES: PREVENT RACES

e Canonly have one mutable ref to data at a time
¢ Can’'t have mutable and immutable refs at same time

fn quick sort<T:PartialOrd+Send>(v: &mut [T]) {
if v.len() > 1 {

let mid = partition(v); // pick pivot index, partition v
let (lo, hi) = v.split at mut (mid);
rayon::join (|| quick sort(lo),

|| quick sort(lo)); // <-—- oops

UNDER THE HOOD

e Program suggests parallelism, but doesn’t require
e Library free to decide when and where to execute
e Goal: balance out work among all cores
e Work-stealing parallelism

= EFach core has a public queue of tasks

m |f core finishes early, steal from other queues

CONGURRENCY

WHAT IS CONCURRENCY?

e Tasks can make progress over overlapping periods
e Concurrency Is a property of two things:
1. Low-level execution (hardware level)
2. High-level concept of a “task” (PL level or higher)

NOT SAME AS PARALLELISM

e Concurrency without parallelism
= Multiple threads on a single core processor
m Fach task is a thread, tasks overlap in time
e Parallelism without concurrency
= SIMD parallelism: single instruction, multiple data
= One task, operate on multiple data at same time

WHY CONCURRENCY?

e Tasks are a useful abstraction for programmers

= Natural way to organize systems, group code

= Threads for Ul, listening to network, writing file
e Don’t need to manually specify interleaving

= Programmer usually can’t plan interleaving

= “Run whatever is ready, | don’t care what order”

CHALLENGES

INTERLEAVING EXECUTION

e Scheduler decides which task to run, for how long
= Actual execution switches rapidly between tasks
e Scheduler is not controlled by the programmer
= Tasks can be paused, restarted at any time
= Order may appear non-deterministic, random

HARD T0 THINK ABOUT!

e One thread with 100 instructions
= One possible ordering
e 2 threads with 100 instructions

= 103** possible orderings

e 1000 threads with 100,000 instructions
= A whole |lot of possible orderings

If even one interleaving has a bug, the
whole program has a bug

CONCURRENCY BUGS: BAD

e Can be intermittent
= Sometimes there, sometimes not
e May be very rare, but still serious
= Every 7 months, system wipes all files
e Very hard to reproduce
= Don’t know which interleaving caused bug

