
LECTURE 21
Theory and Design of PL (CS 538)

April 08, 2020

PARALLELISM

WHAT IS PARALLELISM?
Multiple tasks executing at same instant in time

Think: multicore, datacenter, supercomputer
Property of actual execution on hardware

Not property of language/program

WHY PARALLELISM?
1. We want to go really fast!
2. We’re getting more and more cores on CPUs

CPU clocks aren’t getting much faster
3. Custom chips becoming more common

GPUs, ASICs, TPUs, …

EXAMPLES

DATA PARALLELISM
Divide up data into a bunch of pieces

Useful when you have a lot of homogeneous data
Image data, log �les, training examples, …

Process parts independently, usually in same way
Wait for tasks to �nish, collect results
Examples: MapReduce, Hadoop

TASK PARALLELISM
Divide up task into a bunch of pieces
Try to run tasks at the same time
Complications

Some tasks may depend on other tasks
Often unclear how to split up a complex task
Scheduling tasks makes a big difference

BIT-LEVEL
Instruction-set architecture level
Use bigger instructions to operate on more data
Get more done with every instruction
Examples

16-bit, 32-bit, 64-bit microprocessors
SIMD: single instruction, multiple data

INSTRUCTION-LEVEL
Instruction-set architecture level
Run instructions themselves in parallel

Each clock cycle, execute multiple instructions
Common in all modern processors

Pipelining
Gain when instructions don’t interfere

MULTICORE
Package several processors into one
4-, 8-, 16-, 32-cores are not unusual
Each core is almost a separate CPU

GPUS AND ASICS
Application Speci�c Integrated Circuits
Specialized chips for specialized tasks

Really, really ef�cient for certain tasks
Examples

GPUs: processing graphics
TPUs: training neural networks
ASICs: mining bitcoin

DISTRIBUTED COMPUTING
Geographically spread-out computers
Grid computing: borrow time from idle computers

SETI@Home, protein folding, …
Datacenters

SUPERCOMPUTERS
Really, really big computers

Footprint of several basketball courts
Hundreds of miles of cabling

Weather prediction, computational biology, …
Massively parallel

Millions, or even tens of millions of “cores”

CHALLENGES

DATA RACES
Two requirements:
1. Multiple tasks read/write same piece of data
2. Final state depends on the interleaving
This is almost never what you want!

Interleaving is not under programmer control
Data race: result not under programmer control

EXAMPLE

Final result depends on when Y := X is executed

Earlier: Y ends up 0

Later: Y ends up 1

Easy to see in small programs, harder in big programs

X := 0; X := 1 || Y := X

“HEISENBUGS”
Unpredictable behavior
Sometimes show up, sometimes don’t
Very hard to reproduce and debug

"We’re hitting this catastrophic bug every
3 months or so. Can you �x it?

(IN)FAMOUS RACE CONDITIONS
Many, many security vulnerabilities due to races
Therac-25 radiation therapy machine

Serious injuries to patients
GE energy management system

Caused Northeast blackout of 2003
Two day outage, more than 50 million affected

FEEDING THE CORES
When some steps get faster, bottlenecks shift

“Amdahl’s law”
How to effectively use cores?

If they sit idle, waste time
4 cores? 16 cores? 128 cores?

How to get data to where it is needed?
Communication takes time

How to synchronize?

COMPILER AND HARDWARE ARE OUT TO
GET YOU

Compiler may reorder instructions to optimize
Hardware also reorders instructions to go fast
Rules for which reorderings are OK is… not clear

Formally captured by a “memory model”
Most languages use the “C11 memory model”

C11 memory model not really formalized

FORK-JOIN MODEL

EXPRESS PARALLELISM IN PL
Programmer knows something about the data
Can help compiler decide how to divide tasks
Indicate parts that can safely be done in parallel

FORKING
Parent thread spawns child to execute some function
Parent thread doesn’t wait for child, keeps going
Child executes, hopefully in parallel with parent

JOINING
Wait for another thread to �nish before continuing

“Block on another thread”
Example: wait until all child tasks are done

Need to synchronize to collect results

IN RUST: RAYON

DATA PARALLELISM CRATE
Name refers to Cilk: C/C++ parallel extensions
Simple interface to write data-parallel stuff
Often: change into_iter to into_par_iter

EXAMPLE: SEQUENTIAL
Suppose we have:

List of a bunch of shops
List of products we care about

Want to compute: sum of prices across all stores

let total = shops.iter()
 .map(|store| store.compute_price(&products))
 .sum();

EXAMPLE: PARALLEL
Using Rayon: easy to make this computation parallel
Each task shares products, but read-only: no races!

let total = shops.par_iter()
 .map(|store| store.compute_price(&products))
 .sum();

BUILDING BLOCK: JOIN
Run two closures in parallel, wait until done

fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
 if v.len() > 1 {
 let mid = partition(v); // pick pivot index, partition v
 let (lo, hi) = v.split_at_mut(mid);
 rayon::join(|| quick_sort(lo),
 || quick_sort(hi));
 }
}

REF RULES: PREVENT RACES
Can only have one mutable ref to data at a time
Can’t have mutable and immutable refs at same time

fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
 if v.len() > 1 {
 let mid = partition(v); // pick pivot index, partition v
 let (lo, hi) = v.split_at_mut(mid);
 rayon::join(|| quick_sort(lo),
 || quick_sort(lo)); // <-- oops
 }
}

UNDER THE HOOD
Program suggests parallelism, but doesn’t require
Library free to decide when and where to execute
Goal: balance out work among all cores
Work-stealing parallelism

Each core has a public queue of tasks
If core �nishes early, steal from other queues

CONCURRENCY

WHAT IS CONCURRENCY?
Tasks can make progress over overlapping periods
Concurrency is a property of two things:
1. Low-level execution (hardware level)
2. High-level concept of a “task” (PL level or higher)

NOT SAME AS PARALLELISM
Concurrency without parallelism

Multiple threads on a single core processor
Each task is a thread, tasks overlap in time

Parallelism without concurrency
SIMD parallelism: single instruction, multiple data
One task, operate on multiple data at same time

WHY CONCURRENCY?
Tasks are a useful abstraction for programmers

Natural way to organize systems, group code
Threads for UI, listening to network, writing �le

Don’t need to manually specify interleaving
Programmer usually can’t plan interleaving
“Run whatever is ready, I don’t care what order”

CHALLENGES

INTERLEAVING EXECUTION
Scheduler decides which task to run, for how long

Actual execution switches rapidly between tasks
Scheduler is not controlled by the programmer

Tasks can be paused, restarted at any time
Order may appear non-deterministic, random

HARD TO THINK ABOUT!
One thread with 100 instructions

One possible ordering
2 threads with 100 instructions

 possible orderings
1000 threads with 100,000 instructions

A whole lot of possible orderings

10344

If even one interleaving has a bug, the
whole program has a bug

CONCURRENCY BUGS: BAD
Can be intermittent

Sometimes there, sometimes not
May be very rare, but still serious

Every 7 months, system wipes all �les
Very hard to reproduce

Don’t know which interleaving caused bug

