LECTURE 20

Theory and Design of PL (CS 538)
April 06,2020

[TERATOR ADAPTERS

FP FOR ITERATORS

e Many functional languages: operate on lists
e Rust: similar operations, but on iterators
e Transform iterators into new iterators

= chain: glue two iterators in sequence

m 7 ip:palrup two iterators
" step by:iterator skipping every few elements
" skip/take:skipor take first few elements

e All your favorites FP patterns
" map/filter/fold/scan

EXAMPLE: MAPPING

e Common Rust operations defined on iterators

let v: Vec<i32> = vec![1l, 2, 3];:

let v2: Vec<i32> = v.iter () // get iterator
.map (|x] x + 1) // 1ncrement each by one
.collect () ; // turn back into vector

// same as: let v2: Vec<i32> = v.iter().map(|x| x + 1).collect();

println! ("v: {}", v); // OK: .iter() doesn't take ownership
println! ("v2: {}", v2);

e Chaining . foo () .bar () .baz () Is Rust style

EXAMPLE: FILTERING

e Keep only elements satisfying predicate

let v: Vec<i32> = vec![1l, 2, 3];

let v2: Vec<i32> = v.into iter () // takes ownership!
filter (x| x.1s even())
.collect () ; // turn back into vector

println! ("v2: {}", v2);
println! ("v: {}", v); // Not OK: into iter () took owernship

CHAINING CALLS, CHAINING STRUCTS

e Each call returns an intermediate struct
e Methods defined on these structs

let v: Vec<i32> = vec![1, 2, 31;

// let vZ2: Vec<i32> = v.iter().map(|lx| x + 1).collect()

let v2iter: Iter<&i3z2> = v.iter();

let vZ2map: Map<Iter<&i32>, £n(132)->132> = vZ2iter.map (/x| x + 1);
let v2: Vec<i32> = vZmap.collect ()

println! ("v: {}", v); // OK: .iter() doesn't take ownership
println! ("v2: {}", v2);

RECAP: RUST
REFERENCES

THE GOLDEN RULES

e Aliasing: two references to same memory
e |[n any scope, there can be either:

1. Any number of immutable references

2. At most one mutable reference
e ...referring to the same data

One or the other: not both!

PLAIN REFS: &T AND &MUT T

e Standard, economy class references

e Mutable/immutable view on some data
= Does not own underlying data
= Data guaranteed to be valid

e When aref falls out of scope: nothing happens
= No ownership, no destructor, no deallocation
= May allow new borrows to be taken

BOX<T> TYPE

e Behaves almost exactly like areferenceto T
= Only difference: data is put on the heap
e Box owns the underlying data

let my box = Box::new(String::from("foo")); // store foo
let un box = *my box; // get data from the box

println! ("box = {}", un box); // looks like normal String

RECURSIVE TYPES

e Rust requires all data to have constant stacks size
e Problem for recursive types

enum IntList
Cons (132, IntList),
N11l,

}

e Compiler complains: don’t know size of IntList!

SOLUTION: USE A BOX

e Put the thing of unknown size (IntList) on the heap

enum ntlList
Cons (132, Box<IntList>),
Nil,

}

e A bit awkward, but it works

fn main () {
let list = Cons (1,
Box: :new (Cons (2,
Box: :new (Cons (3,
Box::new (N11))))));

STD::BOXED::BOX

e Owned data on the heap

e Behaves much like normal mutable reference
= Can be dereferenced, assigned to, etc.

e When a box falls out of scope: heap deallocation
= Owns data: guaranteed no live refs to data

e Can move out data by dereferencing
= Special case for Box type!

MARING REFERENGES
SMARTER

“SMART POINTERS”

o Look like references, but do more
e Control over ownership, sharing, de-allocation, etc.
e \We use these all the time in Rust
s Examples: String, Vec, ...
e Need unsafe Rust to implement these things

FIRST OPERATION: DEREFERENGE

e For references, ™ operation gets underlying data
m Example: *ref returns target of ref

e Dot notation does something similar
= Example: ref. foo ()

SECOND OPERATION: DROP

e Datais dropped when its owner goes out of scope
e When reference is dropped, nothing happens

= Reference borrows data, doesn’'t own it
e Can customize drop to do more things

DEREFERENCING

THE DEREF TRAII

e Treat smart pointers like regular references
e Get plain, immutable reference to data

B Dere

trait Deref {

)

type Target;

“Mut trait similar for mutable

fn deref (&self) -> &Self::Target;

e Compiler converts: *spto * (sp.dere:

N
P S
v
v

EXAMPLE

e Augment plain data with some extra side data

struct MyBox<T> {
data: T, // underlying data

size: 132, // side info
flag: bool, // side info

J

impl<T> Deref for MyBox<T> {
type Target = T;

fn deref (&self) -> &T {
// get a reference to underlying data

& (self.data)

QUICK ASIDE: AUTO-DEREF

e Why do these all work?

fn 1s none<T> (&self) -> bool // method of Option<T>
// take Option ref, to bool

let my opt = None;

let bl = (&my opt).is none(); // OK: &my opt is ref
let b2 = my opt.is none(); // but my opt 1is not ref
let b3 = (&&my opt).is none(); // wait

let b4 = (&&&&6&&&&&MY OPL) .1s none(); // 2?2?72

COMPILER INSERTS DEREFS

e Infers how many * and deref needed

= Exact rules are not exactly specified
= Mostly: Just Works

e Current best description (from stackoverflow)
= |f have thing of type S and expecting type &T
s Deref/* arbitrarily many times until typeis T

= Then add back a &
e Makes deeply nested refs much easier to use
= Just don'’t think too hard about pointer types

DE-ALLOCATING

THE DROP TRAIT

e Describe destructor: what to run when cleaning up

trait Drop {
fn drop (&mut self) ;

}

e Before var goes out of scope, call var.drop ()
e Effect: tells stored data to do de-allocation

EXAMPLE

e Print a message when dropping data

struct DroplLoudString { data: String }
impl Drop for DroplLoudString {
fn drop (&mut self) { println! ("Dropping {} !", self.data); }

fn main() {

let ¢ = DropLoudString { data: String::from("foo") };

{
let d = DropLoudString { data: String::from("bar") };
println! ("DropLoudStrings created.");
// Dropping bar !

J

// Dropping foo !

REFERENGE COUNTED
POINTERS

MULTIPLE OWNERS

e Immutable underlying data
e Smart pointer tracks number of owners
= |[ncrements when pointer is copied
= Decrements when pointer is dropped
e Data dropped when there are no owners

WHAT COULD G0 WRONG?

e No owner: need to figure out when to deallocate
e Multiple references share view on data
= Mutation is dangerous

IN RUST: STD::RC::RC

e Rc<T> Istype of reference counted pointerto T
e Rc: :new (foo) : make new pointer holding foo
* Rc::clone(rc pt):makeacopyofrc pt

EXAMPLE: SHARING LISTS

e Try toshare a part of a list, but doesn't work

enum L[L1st
Cons (132, Box<List>),

Nil,

}

fn main() {
let a = Cons (b5, Box::new(Cons (10, Box::new(Ni1l))));
let b = Cons (3, Box::new(a)); // OK: owner 1S now b

let ¢ = Cons (4, Box::new(a)); // Not OK: a 1s not owner

SOLUTION: USE RC

e Explicitly make call to c1one when sharing

enum [List {
Cons (132, Rc<List>), // change Box to Rc

Nil,
}
fn main() {
// Note: a 1s now Rc<List>, not List
let a = Rc::new(Cons (5, Rc::new(Cons (10, Rc::new(N11)))))
let b = Cons (3, Rc::clone(&a)); // OK: clone reference

let ¢ = Cons (4, Rc::clone(&a)); // OK: clone reference

T0Y MODEL OF RC

e Main Rc struct: holds a Box<T>, int count

= One total, for all users

e Rc handle struct: points to main struct
= One per user

e Clone: handle -> main -> increment count
s Copy the handle (hot main struct!)

e Deref: handle -> main -> boxed data

e Drop: handle -> main -> decrement count
= |[f count zero, drop main struct and box
= Drop the handle (not main struct!)

WHY IS THIS (MOSTLY) SAFE?

e Track how many pointers to data, deallocate at zero
m Danger: reference cycles will leak memory

e Ban mutation entirely
= Don't hand out mutable refs to data
= Don't implement DerefMut

SMARTER POINTERS

CLONE ON WRITE

e Smart pointer to some data

e [f need immutable access: don't clone
= Multiple readers safely share same copy

e |[f need mutable access: clone an owned copy
= Clone lazily, on demand

STD::BORROW::COW

e Essentially,an enum
= Cow::Borrowed: points to borrowed value

= Cow::Owned: points to owned value

let mut cow = Cow: :Borrowed ("moo"); // borrowed &str
println! ("What does the cow say? {}", cow); // doesn't clone
cow.to mut () .make ascii uppercase(); // clones to owned String

println! ("What does the cow say now? {}", cow); // MOO

WHAT COULD G0 WRONG?

e Each holder of smart pointer thinks it owns data

e May try to mutate “own copy” of data

e Behind the scenes, may all be sharing same data

e Don't want other mutations to show up in my data

WHY IS THIS SAFE?

e Canonly get mut ref through to mut

e Aslong as no one calls this, it's safe to share
= No mutation == no problem with aliasing
e Old idea in computer science

INTERIOR MUTABILITY

e Sometimes: immutable fn mutates “under the hood”
= Essentially, lie about mutability
e Example: memoization
m |n first call, cache answer (mutate state)
= |n next calls, lookup answer
= \Want: client shouldn’t know about mutation!

STD::CELL::CELL

e Holds owned value T, gives out owned values
e Types lie: claim Cell is immutably borrowed

fn set (&self, val: T)

fn take(&self) -> T

fn replace(&self, val: T) > T
let ¢ = Cell::new(b);

c.set (0);
let si1ix = c.take () ;

WHAT COULD G0 WRONG?

o Alot, it turns out
e Might mutate when there are other immut refs out
= Allowed since set/replace borrows immutably!

WHY IS TRIS SAFE?

e Cell never gives borrows to T, only owned values!

STD::CELL::REFCELL

e Holds owned value T, gives out referencesto T
= Alias rules checked at runtime: may panic!

fn borrow (&self) —-> Ref<T>
fn borrow mut (&self) -> RefMut<T> // actually: mut borrow!

let c

RefCell::new(d) ;

let mut ref

= C.borrow mut () ;
*mut ref = /;

let other ref = c.borrow(); // runtime panic: already mut ref

WHAT COULD G0 WRONG?

e Even more stuff might go wrong

e Really handing out refstotheinnerdata T
= Mutable and immutablerefsto T?
= Two mutablerefsto T live at same time

WHY IS THIS SAFE?

e Need to enforce aliasing rules for safety
e RefCell: enforce rules at runtime
= [f borrowing rules fail, panic

IN MORE DETAIL..

fn borrow (&self) -> Ref<T>

fn borrow mut (&self) -> RefMut<T> // actually: mut borrow!

e Gives out “Ref” and “RefMut”
e Not actually references—more smart pointers!
= Track how many borrows of RefCell are alive

PERVASIVE IN RUST

e Quite common in C++ as well
e Stay tuned: smart pointers for locking
= Ref to locked value, exclusive access
= Customized drop: auto unlock the lock!

