
LECTURE 20
Theory and Design of PL (CS 538)

April 06, 2020

ITERATOR ADAPTERS

FP FOR ITERATORS
Many functional languages: operate on lists
Rust: similar operations, but on iterators
Transform iterators into new iterators
chain: glue two iterators in sequence

zip: pair up two iterators

step_by: iterator skipping every few elements

skip/take: skip or take �rst few elements

All your favorites FP patterns
map/filter/fold/scan

EXAMPLE: MAPPING
Common Rust operations de�ned on iterators

Chaining .foo().bar().baz() is Rust style

let v: Vec<i32> = vec![1, 2, 3];

let v2: Vec<i32> = v.iter() // get iterator
 .map(|x| x + 1) // increment each by one
 .collect(); // turn back into vector
// same as: let v2: Vec<i32> = v.iter().map(|x| x + 1).collect();

println!("v: {}", v); // OK: .iter() doesn't take ownership
println!("v2: {}", v2);

EXAMPLE: FILTERING
Keep only elements satisfying predicate

let v: Vec<i32> = vec![1, 2, 3];

let v2: Vec<i32> = v.into_iter() // takes ownership!
 .filter(|x| x.is_even())
 .collect(); // turn back into vector

println!("v2: {}", v2);
println!("v: {}", v); // Not OK: into_iter() took owernship

CHAINING CALLS, CHAINING STRUCTS
Each call returns an intermediate struct
Methods de�ned on these structs

let v: Vec<i32> = vec![1, 2, 3];

// let v2: Vec<i32> = v.iter().map(|x| x + 1).collect();

let v2iter: Iter<&i32> = v.iter();

let v2map: Map<Iter<&i32>, fn(i32)->i32> = v2iter.map(|x| x + 1);

let v2: Vec<i32> = v2map.collect();

println!("v: {}", v); // OK: .iter() doesn't take ownership
println!("v2: {}", v2);

RECAP: RUST
REFERENCES

THE GOLDEN RULES
Aliasing: two references to same memory
In any scope, there can be either:
1. Any number of immutable references
2. At most one mutable reference
… referring to the same data

One or the other: not both!

PLAIN REFS: &T AND &MUT T
Standard, economy class references
Mutable/immutable view on some data

Does not own underlying data
Data guaranteed to be valid

When a ref falls out of scope: nothing happens
No ownership, no destructor, no deallocation
May allow new borrows to be taken

BOX<T> TYPE
Behaves almost exactly like a reference to T

Only difference: data is put on the heap
Box owns the underlying data

let my_box = Box::new(String::from("foo")); // store foo

let un_box = *my_box; // get data from the box

println!("box = {}", un_box); // looks like normal String

RECURSIVE TYPES
Rust requires all data to have constant stacks size
Problem for recursive types

Compiler complains: don’t know size of IntList!

enum IntList {
 Cons(i32, IntList),
 Nil,
}

SOLUTION: USE A BOX
Put the thing of unknown size (IntList) on the heap

A bit awkward, but it works

enum IntList {
 Cons(i32, Box<IntList>),
 Nil,
}

fn main() {
 let list = Cons(1,
 Box::new(Cons(2,
 Box::new(Cons(3,
 Box::new(Nil))))));
}

STD::BOXED::BOX
Owned data on the heap
Behaves much like normal mutable reference

Can be dereferenced, assigned to, etc.
When a box falls out of scope: heap deallocation

Owns data: guaranteed no live refs to data
Can move out data by dereferencing

Special case for Box type!

MAKING REFERENCES
SMARTER

“SMART POINTERS”
Look like references, but do more
Control over ownership, sharing, de-allocation, etc.
We use these all the time in Rust

Examples: String, Vec, …
Need unsafe Rust to implement these things

FIRST OPERATION: DEREFERENCE
For references, * operation gets underlying data

Example: *ref returns target of ref
Dot notation does something similar

Example: ref.foo()

SECOND OPERATION: DROP
Data is dropped when its owner goes out of scope
When reference is dropped, nothing happens

Reference borrows data, doesn’t own it
Can customize drop to do more things

DEREFERENCING

THE DEREF TRAIT
Treat smart pointers like regular references
Get plain, immutable reference to data
DerefMut trait similar for mutable

Compiler converts: *sp to *(sp.deref())

trait Deref {
 type Target;

 fn deref(&self) -> &Self::Target;
}

EXAMPLE
Augment plain data with some extra side data

struct MyBox<T> {
 data: T, // underlying data
 size: i32, // side info
 flag: bool, // side info
}

impl<T> Deref for MyBox<T> {
 type Target = T;

 fn deref(&self) -> &T {
 // get a reference to underlying data
 &(self.data)
 }
}

QUICK ASIDE: AUTO-DEREF
Why do these all work?

fn is_none<T>(&self) -> bool // method of Option<T>
 // take Option ref, to bool

let my_opt = None;

let b1 = (&my_opt).is_none(); // OK: &my_opt is ref
let b2 = my_opt.is_none(); // but my_opt is not ref

let b3 = (&&my_opt).is_none(); // wait
let b4 = (&&&&&&&&&my_opt).is_none(); // ???

COMPILER INSERTS DEREFS
Infers how many * and deref needed

Exact rules are not exactly speci�ed
Mostly: Just Works

Current best description (from stackover�ow)
If have thing of type S and expecting type &T
Deref/* arbitrarily many times until type is T

Then add back a &
Makes deeply nested refs much easier to use

Just don’t think too hard about pointer types

DE-ALLOCATING

THE DROP TRAIT
Describe destructor: what to run when cleaning up

Before var goes out of scope, call var.drop()
Effect: tells stored data to do de-allocation

trait Drop {
 fn drop(&mut self);
}

EXAMPLE
Print a message when dropping data

struct DropLoudString { data: String }
impl Drop for DropLoudString {
 fn drop(&mut self) { println!("Dropping `{}`!", self.data); }
}

fn main() {
 let c = DropLoudString { data: String::from("foo") };
 {
 let d = DropLoudString { data: String::from("bar") };
 println!("DropLoudStrings created.");
 // Dropping `bar`!
 }
 // Dropping `foo`!
}

REFERENCE COUNTED
POINTERS

MULTIPLE OWNERS
Immutable underlying data
Smart pointer tracks number of owners

Increments when pointer is copied
Decrements when pointer is dropped

Data dropped when there are no owners

WHAT COULD GO WRONG?
No owner: need to �gure out when to deallocate
Multiple references share view on data

Mutation is dangerous

IN RUST: STD::RC::RC
Rc<T> is type of reference counted pointer to T

Rc::new(foo): make new pointer holding foo
Rc::clone(rc_pt): make a copy of rc_pt

EXAMPLE: SHARING LISTS
Try to share a part of a list, but doesn’t work

enum List {
 Cons(i32, Box<List>),
 Nil,
}

fn main() {
 let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
 let b = Cons(3, Box::new(a)); // OK: owner is now b
 let c = Cons(4, Box::new(a)); // Not OK: a is not owner
}

SOLUTION: USE RC
Explicitly make call to clone when sharing

enum List {
 Cons(i32, Rc<List>), // change Box to Rc
 Nil,
}

fn main() {
 // Note: a is now Rc<List>, not List
 let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));

 let b = Cons(3, Rc::clone(&a)); // OK: clone reference
 let c = Cons(4, Rc::clone(&a)); // OK: clone reference
}

TOY MODEL OF RC
Main Rc struct: holds a Box<T>, int count

One total, for all users
Rc handle struct: points to main struct

One per user
Clone: handle -> main -> increment count

Copy the handle (not main struct!)
Deref: handle -> main -> boxed data
Drop: handle -> main -> decrement count

If count zero, drop main struct and box
Drop the handle (not main struct!)

WHY IS THIS (MOSTLY) SAFE?
Track how many pointers to data, deallocate at zero

Danger: reference cycles will leak memory
Ban mutation entirely

Don’t hand out mutable refs to data
Don’t implement DerefMut

SMARTER POINTERS

CLONE ON WRITE
Smart pointer to some data
If need immutable access: don’t clone

Multiple readers safely share same copy
If need mutable access: clone an owned copy

Clone lazily, on demand

STD::BORROW::COW
Essentially, an enum

Cow::Borrowed: points to borrowed value
Cow::Owned: points to owned value

let mut cow = Cow::Borrowed("moo"); // borrowed &str

println!("What does the cow say? {}", cow); // doesn't clone

cow.to_mut().make_ascii_uppercase(); // clones to owned String

println!("What does the cow say now? {}", cow); // MOO

WHAT COULD GO WRONG?
Each holder of smart pointer thinks it owns data
May try to mutate “own copy” of data
Behind the scenes, may all be sharing same data
Don’t want other mutations to show up in my data

WHY IS THIS SAFE?
Can only get mut ref through to_mut
As long as no one calls this, it’s safe to share

No mutation == no problem with aliasing
Old idea in computer science

INTERIOR MUTABILITY
Sometimes: immutable fn mutates “under the hood”

Essentially, lie about mutability
Example: memoization

In �rst call, cache answer (mutate state)
In next calls, lookup answer
Want: client shouldn’t know about mutation!

STD::CELL::CELL
Holds owned value T, gives out owned values
Types lie: claim Cell is immutably borrowed

fn set(&self, val: T)

fn take(&self) -> T

fn replace(&self, val: T) -> T

let c = Cell::new(5);
c.set(6);
let six = c.take();

WHAT COULD GO WRONG?
A lot, it turns out
Might mutate when there are other immut refs out

Allowed since set/replace borrows immutably!

WHY IS THIS SAFE?
Cell never gives borrows to T, only owned values!

STD::CELL::REFCELL
Holds owned value T, gives out references to T

Alias rules checked at runtime: may panic!

fn borrow(&self) -> Ref<T>

fn borrow_mut(&self) -> RefMut<T> // actually: mut borrow!

let c = RefCell::new(5);

let mut_ref = c.borrow_mut();
*mut_ref = 7;

let other_ref = c.borrow(); // runtime panic: already mut ref

WHAT COULD GO WRONG?
Even more stuff might go wrong
Really handing out refs to the inner data T

Mutable and immutable refs to T?
Two mutable refs to T live at same time

WHY IS THIS SAFE?
Need to enforce aliasing rules for safety
RefCell: enforce rules at runtime

If borrowing rules fail, panic

IN MORE DETAIL…

Gives out “Ref” and “RefMut”
Not actually references—more smart pointers!

Track how many borrows of RefCell are alive

fn borrow(&self) -> Ref<T>

fn borrow_mut(&self) -> RefMut<T> // actually: mut borrow!

PERVASIVE IN RUST
Quite common in C++ as well
Stay tuned: smart pointers for locking

Ref to locked value, exclusive access
Customized drop: auto unlock the lock!

