LECTURE 13

Theory and Design of PL (CS 538)
April 01, 2020

MORE TRAITS

RUST SYNTAX USES TRAITS

e To use Rust syntax with your types, implement traits
m Square brackets: Index/IndexMut
s Dereferencing (star): Deref/DerefMut
s Operators (+, -, ...): Add/Sub/...
= For loops: iterators
e See more in std::ops

https://doc.rust-lang.org/std/ops/index.html

OUR RUNNING EXAMPLE

e Atype of pointsin 3D:Xx,y, z

SQUARE BRACKETS

e Index and IndexMut. Simplified trait definitions:

trait Index<IdxType> {

type Output;

fn 1ndex(&self, 1dx: IdxType) -> &Self: :Output;
}

trait IndexMut<IdxType> {
type Output;
fn 1index (&mut self, 1dx: IdxType) —-> &mut Self: :Output;

e Output IS an associated type of the trait
= Need to pick a type when implementing trait

IMPLEMENTING IT

impl Index<char> for Point3D {
type Output = £32; // indexing produces floats
fn 1ndex(&self, 1dx: char) —-> &Self::Output
match 1dx {

'x!'" => &gself.x,

'v! => &self.y,

'z!'! => &gself.z,

=> panic! ("Unknown coordinate!"),

impl IndexMut<char> for Point3D { ... }

TRYING IT OUT

let mut my point = Point3D { x: 1.0, y: 2.0, z: 3.0 };

println! ("x is {}", my point['x']); // uses Index
my point['x'] = 5.0; // uses IndexMut

println! ("x is {}", my point['x']); // uses Index

OVERLOADING OPERATORS

e Just about all operators have corresponding traits
= “+”: std::ops::Add
m “+=":std::ops::AddAssign
m “<<”:std::ops::Shl

e Here's Add (slightly simplified):

// Default: RightSideType = Self (same type)
// Can change to add two things of different types together
trait Add<RightSideType = Self> |

type Output;

fn add(self, rhs: RightSideType) -> Self::Output;

IMPLEMENTING IT

// Add with no type params: RightSideType = Point3D
// In other words: add two Point3D together
impl Add for Point3D {

type Output = Point3D; // result of adding 1s a Point3D
fn add(self, rhs: Point3D) —-> Self::Output {
Point3D {
x: self.x + rhs.x,
v: self.y + rhs.vy,
z: self.z + rhs.z,

TRYING IT OUT

// Make two points
let my point = Point3D { x: 1.0, y: 2.0, z: 3.0 };
let my point2 = Point3D { x: 3.0, y: 2.0, z: 1.0 };

// Add them up
let my final = my point + my point2; // (4.0, 4.0, 4.0)

DEREFERENCING

e Use * operator to turn data into reference

e Mutable or immutable

s Usually: get immutable reference (read)

n | eft-side of assignment: mutable ref (write)
e Note: usually don’t get owned values!

m Refs usually don't have ownership

= Special exception: dereferencing Box

DEREF/DEREFMUT TRAITS

e Simplified defs look something like this:

trait Deref {
type Target; // returned ref will be to this type
fn deref (&self) -> &Self::Target;

J

trait DerefMut {
type Target; // returned ref will be to this type
fn deref (&mut self) -> amut Self::Target;

e We'll hear much more next time...

[TERATORS

EVERYWHERE IN RUST

e Reading command line args

e Stepping through a file system directory
e | ooping through lines in a file

e Handling incoming network connections

INA NUTSHELL

e Type that lets you step through a collection
e Many things in Rust can be treated as iterators

trait Iterator {
// Type of item produced

type Item;

// Try to get the next item
fn next (&mut self) -> Option<Self::Item>;

e next returns next item, or nothing if no more
e Hold iterator state in the type implementing lterator

GETTING AN [TERATOR

e Three typical flavors
" into iter ():producedowned values

" iter ():produce immutable references
" iter mut ():produce mutable references

impl Blah {
fn into iter (self) -> BlahIterOwn { ... }

fn 1ter(&self) —-> BlahIterRef { ... }

fn iter mut (&mut self) -> BlahIterMut { ... }

CONSUMING ITERATORS

e Consuming iterators yield owned values

let v = vec! [String::from("Hello"), String::from("World")];
let mut v iter = v.into iter(); // must be mut!

// Can get owned Strings out
let hello string: String = v iter.next () .unwrap():;

let world string: String = v 1ter.next () .unwrap():;

// Can't use v anymore: moved into iterator

BORROWING ITERATORS

let v = vec![1, 2, 3];
let mut v 1ter = v.iter();

assert eq! ((), Some (&l1));
assert eqg! (v i1ter.next (), Some (&2));
assert eqg! ((), Some(&3));
(()

assert eq! , None);

MUTABLE ITERATORS

let mut v = vec![1, 2, 3];

let mut v 1ter = v.iter mut();
let v ref = v iter.next () .unwrap();
*v.ref = 9; // mutate underlying vec

assert eq!(v[0], 9);

DANGER...

e How do we know the references are valid?
1. Get an iterator from a mutable vector
2. Get areference from iterator
3. Delete everything in vector

e \WWhat happens to the reference?

RUST REJECTS PROGRAM

e This problem is called iterator invalidation

let mut my vec = vec![1l, 2, 3];
// Borrow my vec Immutably: fn iter(&self) ->
let mut my i1ter = my vec.iter();

let my next = my iter.next();

// Borrow my vec mutably: fn clear (&mut self) ->
my vec.clear();

// Fails: can't take Iimmutable borrow, then mutable borrow

FOR LOOPS USE ITERATORS

e Canloop over anything convertible into Iterator

let v = vec![1, 2, 3];

for val in v {
println! ("Got: {}", wval);
J

INTOITERATOR TRAIT

e “This type can be converted into an iterator”
e Trait definition looks something like the following:

trait Intolterator {
type Item; // type of Item produced
type Intolter; // type of iterator, needs Iterator trait

// Turn self into an Iterator
fn into 1ter (self) -> Self::Intolter;

FOR LOOPS, DESUGARED

let v = vec![1, 2, 31;
for val i1in v {
println! ("Got: {}", val);

for val 1n Intolterator::i1nto i1iter(v) {
println! ("Got: {}", wval);

for val 1n v.into 1ter () {
println! ("Got: {}", wval);

// same i1dea for &v or &mut v

IMPLEMENTING ITERATORS

e Make a struct to hold state of iterator

struct Point3DIter {
1t x: Option<f32>, 1t y: Option<f3z2>, 1t z: Option<f3z>,
cur coord: char,

impl Point3DIter {
fn new(p: Point3D) -> Self {
Point3DIter {
1t x: Some (p.Xx),
1t y: Some (p.Vy),
1t z: Some(p.z),
cur coord: 'x' // Initialize cur coord to 'x'

[TERATOR TRAIT

impl Iterator for Point3DIter
type Item = £32; // iterator produces floats (£32)
fn next (&mut self) -> Option<Self::Item> {
match self.cur coord {
'x' => { self.cur coord
'y' => { self.cur coord
'z' => { self.cur coord
=> None

!

y'; self.it x.take() }
'z'; self.1t y.take() }
'a'; self.1t z.take() }

TESTING IT OUT

e Implement Intolterator for Point3D

impl Intolterator for Point3D
fn into 1ter(self) -> Point3DIter
Point3DIter: :new(self)

J
J

let my point = Point3D { x: 1.0, y: 2.0, z: 3.0 };

for val i1n my point {
println! ("Coordinate: {}", wval);

}

CLOSURES
IN RUST

REVIEW: HASKELL CLOSURES

e Functions mentioning external variables
e May be anonymous, or named

v x vy = let closure = (\a b > x + v + a + b) in

CLOSURES IN RUST

e Syntax similar, arguments between pipes
= Don’t need to annotate types (unlike functions)
= Braces are optional

let my closure = |arg| arg + 1;

// with type annotations and braces
let my closure annot = |arg:132| -> 132 { arg + 1 };

// two arguments
let my closure two = |foo, bar| foo + bar;

// no arguments, always returns 42
let my closure unit = || 42;

UNEXPECTED INTERACTIONS

e Normal Rust functions don’t capture context

{

let ext = String::from("foo");

fn bar (mut arg: String) -> String { arg.push str(ext) }; // Bad
}

e Who owns captured variables (ext) in this closure?

{
let ext

let bar
}

String::from("foo") ;
imut arg| { arg.push str(ext) }; // Who owns ext?

CLOSURE TRAITS

e Rust uses traits to describe capture ownership
= Only affects variables mentioned in body

e Compiler infers which trait to assign a closure
= Tries to assigh the most permissive trait
= Compiler may need help sometimes

OPTION 1: MOVE

FNONCE TRAIT

e Trait for functions that can be called at most once
e Closures take ownership of captured variables

= As soon as closure is defined

= Never returns ownership
e FnOnce closures can be called at most once

= Can’t take ownership multiple times!

EXAMPLE: FNONGE

e Use move syntax to make closure FnOnce

= Only required variables are moved
o Useful when spawning new threads (later)
= Move everything thread needs into closure

let v = vec![1, 2, 3];

let copy v = vec![1, 2, 3];

let is equal = move |z| z == v; // Takes ownership of vector
println! ("Can't print v: {}", v); // Not OK: v doesn't own

println! ("Run closure: {}", is equal (copy Vv)); // OK

println! ("Again? {}", 1s equal (copy Vv)); // Not OK

OPTION 2: IMMUTABLE
BORROW

FN TRAIT

e Trait for fns that can be called any number of times
e Closures immutably borrow captured variables
= Can’'t modify captured variables

07
"my string";

let env
let a str

let simple closure larg| arg + env;

let printf closure larg| println! ("strs: {}, {}", arg, a str);

OPTION 3: MUTABLE
BORROW

FNMUT TRAIT

e Trait for fns that can be called any number of times
e Closures mutably borrow captured variables
= Can modify captured variables

EXAMPLE: FNMUT

e FnMut is automatically inferred by compiler

let mut s = String::new();
println! ("Before: {}", s); // Before:
{
let mut app s = |arg| s.push str(arg);

app s (" foo");
app s (" bar");
}

println! ("After: {}", s); // After: foo bar

