LECTURE 18

Theory and Design of PL (CS 538)
March 30, 2020






HWo OUT: START EARLY

e Duein 2.5 weeks: April 17 (FRIDAY)

e WR5 Part 1: Short answers (why code is rejected)
= Do these first

e HW5: implement key-value Map based on BST
s Operations, iterator traits, custom dropping
= APl modeled after std::collections::BTreeMap

This assignment is big, with lots of
compiler errors.


https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

HW3 OUT: TIPS

e Read the README carefully...
e Try using recursion
= Will avoid the borrow checker a bit
= For more compiler errors, use loops (optional)
e Most of the functions are one-liners
e Get the first iterator (consuming) right
= Other two iterators are nearly copy-paste




HWA4: FEEDBACK?



MIXING MOVING AND
BORROWING




OPTION:: TAKE()

impl Option<T> {
pub fn take (émut self) -> Option<T> { ... }
}

e Remember: smut selfisref.toOption<T>

e \What does this function do?

1. Get what self is pointing at (take ownership!)
2. Write Nonetoself




HOW DOES OWNERSHIP CHANGE?

e Before and after take:

m Before: caller doesn't own, someone else owns
some(...)

m After: callerowns Some (.. .), someone else
OWNS None.

e Note: ownership transfers, but data is never copied!
e Alsosee std: :mem: :replace,std: :mem: : swap



REVISITING

let my str = String::from("Hello world!");
let maybe str = Some (my str);

match maybe str {
None => println! ("Nothing!"),
Some (s) => println! ("Something!"), // String *moved* into s
// s dropped here

println! ("Still there? {}", maybe str.is none()); // Not OK!

e Evenmaybe strisdropped:inner s is gone!



TARE INNER, LEAVE WRAPPER

e What happens if we take themaybe str instead?

let mut maybe str = Some (String::from("Hello world!"));
let mut str ref = smut maybe str; // type: &mut Option<String>

let took str = mut str ref.take(); // type: Option<String>
// maybe str 1is now None

match took str {
None => println! ("Nothing here!"),
some(s) => ... s owns String ...,

println! ("Still there? {}", maybe str.is none()); // Now OK



GENERICS AND
POLYMORPHISM



TYPE WITH PARAMETERS

e Just like in Haskell

m [ypes: [a],Maybe a,...
e Similar idea in Rust

m [ypes: Option<T>,...




GENERIC TYPES

e Put type variables in angle brackets

struct MyPair<T, U> {
first: T,
second: U,

J

enum MySum<T, U> {
Left (T),
Right (U),

}



GENERIC FUNCTIONS

e Like polymorphic functions in Haskell

fn swap pair<T, U>(input: MyPair<T, U>) -> MyPair<U, T> {
MyPair { first: 1nput.second, second: 1nput.first }

fn swap sum<T, U>(input: MySum<T, U>) -> MySum<U, T> {
match 1nput {
Left (val) => MySum: :Right (val),
Right (val) => MySum: :Left (val),



GENERIC METHODS

e Can put type parameters on impl blocks
= Don't need to annotate type params inside

impl<T, U> MyPair<T, U> {
fn pair fn t(self, t: T) { ... }

fn pair fn u(self, u: U) { ... }

fn pair fn(self, pair: MyPair<T, U>) { ... }
}



RUST DETAILS

e Generic functions are specialized at compile time
» Change foo<T>(t: T) tofoo i32(t: 1i32)
m No extra runtime cost for using generics

= Polymorphic to monomorphic (monomorphization)
e Sizes of type params must be known at compile time




ALIASING




THE GOLDEN RULES

e Aliasing: two references to same memory
e |[n any scope, there can be either:

1. Any number of immutable references

2. At most one mutable reference
e ...referring to the same data

One or the other: not both!



WHY ALIASING MATTERS

e Aliasing makes optimizations harder
= Makes it harder to cache, reorder code, ...

e Aliasing and mutation are dangerous together
= \ery common source of memory errors



1S THIS OPTIMIZATION OK?

fn compute (input: &u32, output: &mut u32) {
if *input > 10 { *output = 1; } // lookup input
if *input > 5 { *output *= 2; } // lookup again
}

fn compute opt (input: &u32, output: &mut u3d2) {
let cached input = *input; // cache *input
if cached input > 10 {
*output = 2;
} else 1f cached input > 5 {
*output *= 2;
}
}

e Not OK if Input and output point to same thing
e |n Rust: OK since input and output can't alias



ALIASING AND MUTATION: DANGER!

e Rules are crucial to ensure memory safety

let mut data = vec![1l, 2, 3]:;
let fst ref = &datalO];

data.clear(); // rejected by Rust: breaks ref rules!
println! ("{}", fst ref); // what is this pointing at now???



LIFETIMES




DON'T FOCUS ON DETAILS

e Rust rejects lots of valid programs
e Analysis is getting better/more sophisticated
m Rules for lifetimes are changing/evolving
e Think of this as a sketch about how Rust checks

High-level: how Rust analyzes aliasing



BACK T THE BAD EXAMPLE

let mut data = vec![1, 2, 3];
let fst ref = &datalO];

data.clear(); // rejected by Rust: breaks ref rules!
println! ("{}", fst ref); // what is this pointing at now???



HOW DOES RUST KNOW?

e |n Rust, each reference has a lifetime
e Borrow-checker reasons about facts like:

= \Whenever Ref 1 is valid, Ref 2 is valid too
m “Ref 2 lives longer than Ref 1”



LIFETIMES: SCOPE NAMES

e Think: name for a scope/block in program
e Static lifetime 'static is global scope (biggest)

e Scope variables ' a refer to some scope
m Can't write concrete lifetimes besides 'static




LIFETIMES ARE NESTED

e Think: scopes are nested too
e Write: 'b: 'afor 'bcontains 'a

= Thatis: 'b lives longer than ' a
e Example: 'static: 'a, global scope islongest



EXAMPLE

{ // < 'al
let foo = 1; //

{ // < 'a2
let bar = 2; //
{ // < 'a3
let baz = 3; S/
} // <
} // <
} // <

o |ifetimesarenested: 'al:'a2and 'a2:'a3




REFERENCES HAVE LIFETIMES

e Describes how long reference is valid for
o Lifetimes appear in ref types (and a few other places)

&'a String // Ref living 'a to String living 'a
&'b mut String // Mutable ref 1iving 'b to String



LIFETIME EXAMPLES


https://doc.rust-lang.org/nomicon/lifetimes.html

LIFETIME EXAMPLES

let mut data = vec![1, 2, 3];
let fst ref = &datalO];

data.clear(); // rejected by Rust: breaks ref rules!
println! ("{}", fst ref); // what is this pointing at now???


https://doc.rust-lang.org/nomicon/lifetimes.html

LIFETIMES EVOLVE

e “Rust 2015”: what we just saw
m | ifetimes are scopes (lexical lifetimes)
m Rejects many safe programs
e “Rust 2018”: lifetimes are sets of references
= Also known as non-lexical lifetimes (NLL)
= Gory details/examples in RFC proposal


https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md

ANNOTATING LIFETIMES



USUALLY: NO NEED TO WORRY

e Lifetimes inferred automatically 99.9% of the time
e Certain kinds of code need annotations

m Structs storing references

= Functions returning references



FUNCTIONS AND LIFETIMES

e Typical use case
= Function takes references as arguments
= Function returns reference

e Need to describe how long returned reference lives
= Usually: depends on lifetimes of arguments



EXAMPLE: LIVES FOREVER

static NAME: &'static str = "Steve";

// Omitting lifetimes
fn foo (arg: &String) -> &String { NAME }

// Annotating lifetimes
fn annot foo<'a> (arg: &'a String) -> &'static String { NAME }

// Return ref doesn't depend on input, lives forever

e Function must work for all choices of ' a
= Just like all generic functions in Rust



EXAMPLE: LIFETIME OF INPUTS

// Omitting lifetimes

fn plus foo (arg: &mut String) -> &mut String {
arg.push str (" and foo");
arg

)

// Annotating lifetimes

fn annot plus foo<'a> (arg: &'a mut String) -> &'a mut String {
arg.push str (" and foo");
arg

)

e Returnref lives (at least) as long as input arg



DANGLING REFERENCES

e This function is broken: it creates a dangling pointer

fn bad foo () -> &String {
let too short = String::from("too short");

&too short
} // too short goes out of scope, 1s dropped here

e Returns areference, but too short isdropped
= Returned reference points to nothing!



PREVENTED IN RUST

e Compiler complains: can’t infer lifetimes
e What if we try to fill in some lifetimes?

fn bad foo<'a> () -> &'a String {
let too short = String::from("too short");

&too short
} // too short goes out of scope, 1is dropped here

e Compiler rejects: returned reference doesn't live (at
least) as long as ' a for all possible lifetimes ' a

s \WWould work ifref had 'static lifetime



COMPILER MAY NEED RELP

e The following simple function does not compile

fn longest(x: &String, y: &String) —-> &String {
if x.len() > v.len() {
X

} else {

Y
J

)

e Compiler not sure how long the returned string lives



ADD ANNOTATIONS

e Help the compiler by supplying lifetimes

fn longest<'a> (x: &'a String, y: &'a String) -> &'a String {
if x.len() > v.len() {
X
} else {

Y
J

J

e Read: if x and v live at least as long as ' a, then
returned string also lives at least as long as ' a



RUST TRAITS



THINK: TYPECLASSES

e Defining a new trait
= List methods required to implement trait
= Can put default implementations

trait Summary {
fn summarize author (&self) -> String;

fn summarize (&self) —-> String {
format! (" (Read more from {}...)", self.summarize author())

J
J



IMPLEMENTING A TRAIT

e Provide missing implementations (or use defaults)

// Our type
struct NewsArticle {

author: String,
content: String,

J

// Implementing the trait
impl Summary for NewsArticle {
fn summarize author (&self) -> String {
format! ("{}", self.author)

J

// leave summarize as default



REQUIRING A TRAIT

e Function may require parameters implement traits
e Put requirements with type parameters

= Canrequire several traits with “+”

= Called “trait bounds”

fn cmp auth<T: Summary + Ord>(x: &T, y: &T)
// can use Summary trait
let auth x = x.summarize author();

// can use Cmp trait
let cmp two = x.cmp(y);



REQUIRING A TRAIT

e Often cleaner to separate out trait bounds

fn cmp auth<T>(x: &T, y: &T)
where

T: Summary + Ord,

// can 1ist other bounds here

// can use Summary trait
let auth x = x.summarize author();

// can use Cmp trait
let cmp two = x.cmp(y);



TRAITS: EXAMPLES



e Orderingis an enum: Less, Equal, or Greater

= Requires PartialOrd and Eg
e Self (incaps)isthe type with this trait

trait Ord: Eg + PartialOrd {
fn cmp(&self, other: &Self) -> Ordering;
// Example: match x.cmp(&y) { ... }

fn max(self, other: Self) -> Self { ... }
fn min (self, other: Self) -> Self { ... }



CLONE

e Types with ability to do deep copy
e May be expensive, always explicitly stated

trait Clone {
fn clone(&self) —-> Self;

// Example: let dolly two = dolly.clone();
}

// Can also be auto-derived 1f members are Clone
#[derive (Clone) ]
struct Person {

name: String,

age: u3Z,



DROP

e Add custom behavior when type is dropped
= Note: memory is freed no matter what
e Implemented by default, usually no need

trait Drop {
fn drop (&mut self) ;

J

impl Drop for Person {
fn drop (&mut self) ({
println! ("Don't drop me!!!");
J
}



FROM/INTO

e Conversions from a type, and into a type
e Again, conversions always explicit

trait From<T> {
fn from(other: T) -> Self;
// Can convert from T's to this type

)

trait Into<T> {

fn into(self) -> T;

// Can convert from this type to T's
}



MANY, MANY MORE

e Rust makes very liberal use of traits

e Many syntax features hook into traits
= For loops: Intolterator
m Square-brackets: Index/IndexMut
m Dereference: Deref/DerefMut

s Operator overloading (+/-/*): Add/Sub/Mult




MISSING ANYTHING?



INDUCTIVE DATATYPES?

e Can do, but not so easy

= Types must have statically known size on stack
e Size of iInductive datatypes not known statically
e First type definition is rejected:

enum MyLi1st<T> {

N1il,

Cons (T, MyList<T>), // know size of T, but not MyList<T>
}

enum MyLi1stOk<T> {

Nil,

Cons (T, Box<MyListOk<T>>), // Box: put inner 1ist on heap
}



FUNCTION TYPES?

e No plain arrow types
= Sjze of functions is not statically known
m Can't place data on the stack
e Can model various function types using traits (later)



IS THAT REALLY POLYMORPHISM?

e Type variables only types with statically-known size
= Usually needed to specialize generics
e Canoverride this behavior:

// Sized trait: T has size known at compile time
// negative annotation " ?Sized : T *doesn't* need to be Sized
fn foo<T: ?Sized>(t: &T) { ... }

e Usually: when working with references to generics
= Size not important if we don’t need to move data



ARE THOSE REALLY TYPECLASSES?

e Afew differences compared to Haskell
e Operations always take instance as first argument
= Can’t do stuff like Read typeclass:

class Read a where
read :: String —->



