
LECTURE 18
Theory and Design of PL (CS 538)

March 30, 2020

NEWS

HW5 OUT: START EARLY
Due in 2.5 weeks: April 17 (FRIDAY)
WR5 Part 1: Short answers (why code is rejected)

Do these �rst
HW5: implement key-value Map based on BST

Operations, iterator traits, custom dropping
API modeled after std::collections::BTreeMap

This assignment is big, with lots of
compiler errors.

https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

HW5 OUT: TIPS
Read the README carefully…
Try using recursion

Will avoid the borrow checker a bit
For more compiler errors, use loops (optional)

Most of the functions are one-liners
Get the �rst iterator (consuming) right

Other two iterators are nearly copy-paste

HW4: FEEDBACK?

MIXING MOVING AND
BORROWING

OPTION::TAKE()

Remember: &mut self is ref. to Option<T>
What does this function do?
1. Get what self is pointing at (take ownership!)
2. Write None to self

impl Option<T> {
 pub fn take(&mut self) -> Option<T> { ... }
}

HOW DOES OWNERSHIP CHANGE?
Before and after take:

Before: caller doesn’t own, someone else owns
Some(...)
After: caller owns Some(...), someone else

owns None.

Note: ownership transfers, but data is never copied!
Also see std::mem::replace, std::mem::swap

REVISITING

Even maybe_str is dropped: inner s is gone!

let my_str = String::from("Hello world!");
let maybe_str = Some(my_str);

match maybe_str {
 None => println!("Nothing!"),
 Some(s) => println!("Something!"), // String *moved* into s
 // s dropped here
}

println!("Still there? {}", maybe_str.is_none()); // Not OK!

TAKE INNER, LEAVE WRAPPER
What happens if we take the maybe_str instead?

let mut maybe_str = Some(String::from("Hello world!"));
let mut_str_ref = &mut maybe_str; // type: &mut Option<String>

let took_str = mut_str_ref.take(); // type: Option<String>
 // maybe_str is now None

match took_str {
 None => println!("Nothing here!"),
 Some(s) => ... s owns String ...,
}

println!("Still there? {}", maybe_str.is_none()); // Now OK

GENERICS AND
POLYMORPHISM

TYPE WITH PARAMETERS
Just like in Haskell

Types: [a], Maybe a, …

Similar idea in Rust
Types: Option<T>, …

GENERIC TYPES
Put type variables in angle brackets

struct MyPair<T, U> {
 first: T,
 second: U,
}

enum MySum<T, U> {
 Left(T),
 Right(U),
}

GENERIC FUNCTIONS
Like polymorphic functions in Haskell

fn swap_pair<T, U>(input: MyPair<T, U>) -> MyPair<U, T> {
 MyPair { first: input.second, second: input.first }
}

fn swap_sum<T, U>(input: MySum<T, U>) -> MySum<U, T> {
 match input {
 Left(val) => MySum::Right(val),
 Right(val) => MySum::Left(val),
 }
}

GENERIC METHODS
Can put type parameters on impl blocks

Don’t need to annotate type params inside

impl<T, U> MyPair<T, U> {
 fn pair_fn_t(self, t: T) { ... }

 fn pair_fn_u(self, u: U) { ... }

 fn pair_fn(self, pair: MyPair<T, U>) { ... }
}

RUST DETAILS
Generic functions are specialized at compile time

Change foo<T>(t: T) to foo_i32(t: i32)
No extra runtime cost for using generics
Polymorphic to monomorphic (monomorphization)

Sizes of type params must be known at compile time

ALIASING

THE GOLDEN RULES
Aliasing: two references to same memory
In any scope, there can be either:
1. Any number of immutable references
2. At most one mutable reference
… referring to the same data

One or the other: not both!

WHY ALIASING MATTERS
Aliasing makes optimizations harder

Makes it harder to cache, reorder code, …
Aliasing and mutation are dangerous together

Very common source of memory errors

IS THIS OPTIMIZATION OK?

Not OK if input and output point to same thing
In Rust: OK since input and output can’t alias

fn compute(input: &u32, output: &mut u32) {
 if *input > 10 { *output = 1; } // lookup input
 if *input > 5 { *output *= 2; } // lookup again
}

fn compute_opt(input: &u32, output: &mut u32) {
 let cached_input = *input; // cache *input
 if cached_input > 10 {
 *output = 2;
 } else if cached_input > 5 {
 *output *= 2;
 }
}

ALIASING AND MUTATION: DANGER!
Rules are crucial to ensure memory safety

let mut data = vec![1, 2, 3];
let fst_ref = &data[0];

data.clear(); // rejected by Rust: breaks ref rules!
println!("{}", fst_ref); // what is this pointing at now???

LIFETIMES

DON’T FOCUS ON DETAILS
Rust rejects lots of valid programs
Analysis is getting better/more sophisticated

Rules for lifetimes are changing/evolving
Think of this as a sketch about how Rust checks

High-level: how Rust analyzes aliasing

BACK TO THE BAD EXAMPLE
let mut data = vec![1, 2, 3];
let fst_ref = &data[0];

data.clear(); // rejected by Rust: breaks ref rules!
println!("{}", fst_ref); // what is this pointing at now???

HOW DOES RUST KNOW?
In Rust, each reference has a lifetime
Borrow-checker reasons about facts like:

Whenever Ref 1 is valid, Ref 2 is valid too
“Ref 2 lives longer than Ref 1”

LIFETIMES: SCOPE NAMES
Think: name for a scope/block in program
Static lifetime 'static is global scope (biggest)

Scope variables 'a refer to some scope

Can’t write concrete lifetimes besides 'static

LIFETIMES ARE NESTED
Think: scopes are nested too
Write: 'b:'a for 'b contains 'a

That is: 'b lives longer than 'a
Example: 'static:'a, global scope is longest

EXAMPLE

Lifetimes are nested: 'a1:'a2 and 'a2:'a3

{ // < 'a1
 let foo = 1; // |
 { // < 'a2 |
 let bar = 2; // | |
 { // < 'a3 | |
 let baz = 3; // | | |
 } // < | |
 } // < |
} // <

REFERENCES HAVE LIFETIMES
Describes how long reference is valid for
Lifetimes appear in ref types (and a few other places)

&'a String // Ref living 'a to String living 'a
&'b mut String // Mutable ref living 'b to String

LIFETIME EXAMPLES
let x = 0;
let y = &x;
let z = &y;

https://doc.rust-lang.org/nomicon/lifetimes.html

LIFETIME EXAMPLES
let mut data = vec![1, 2, 3];
let fst_ref = &data[0];

data.clear(); // rejected by Rust: breaks ref rules!
println!("{}", fst_ref); // what is this pointing at now???

https://doc.rust-lang.org/nomicon/lifetimes.html

LIFETIMES EVOLVE
“Rust 2015”: what we just saw

Lifetimes are scopes (lexical lifetimes)
Rejects many safe programs

“Rust 2018”: lifetimes are sets of references
Also known as non-lexical lifetimes (NLL)
Gory details/examples in RFC proposal

https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md

ANNOTATING LIFETIMES

USUALLY: NO NEED TO WORRY
Lifetimes inferred automatically 99.9% of the time
Certain kinds of code need annotations

Structs storing references
Functions returning references

FUNCTIONS AND LIFETIMES
Typical use case

Function takes references as arguments
Function returns reference

Need to describe how long returned reference lives
Usually: depends on lifetimes of arguments

EXAMPLE: LIVES FOREVER

Function must work for all choices of 'a
Just like all generic functions in Rust

static NAME: &'static str = "Steve";

// Omitting lifetimes
fn foo (arg: &String) -> &String { NAME }

// Annotating lifetimes
fn annot_foo<'a> (arg: &'a String) -> &'static String { NAME }

// Return ref doesn't depend on input, lives forever

EXAMPLE: LIFETIME OF INPUTS

Return ref lives (at least) as long as input arg

// Omitting lifetimes
fn plus_foo (arg: &mut String) -> &mut String {
 arg.push_str(" and foo");
 arg
}

// Annotating lifetimes
fn annot_plus_foo<'a> (arg: &'a mut String) -> &'a mut String {
 arg.push_str(" and foo");
 arg
}

DANGLING REFERENCES
This function is broken: it creates a dangling pointer

Returns a reference, but too_short is dropped

Returned reference points to nothing!

fn bad_foo () -> &String {
 let too_short = String::from("too short");

 &too_short
} // too_short goes out of scope, is dropped here

PREVENTED IN RUST
Compiler complains: can’t infer lifetimes
What if we try to �ll in some lifetimes?

Compiler rejects: returned reference doesn’t live (at
least) as long as 'a for all possible lifetimes 'a

Would work if ref had 'static lifetime

fn bad_foo<'a> () -> &'a String {
 let too_short = String::from("too short");

 &too_short
} // too_short goes out of scope, is dropped here

COMPILER MAY NEED HELP
The following simple function does not compile

Compiler not sure how long the returned string lives

fn longest(x: &String, y: &String) -> &String {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

ADD ANNOTATIONS
Help the compiler by supplying lifetimes

Read: if x and y live at least as long as 'a, then

returned string also lives at least as long as 'a

fn longest<'a> (x: &'a String, y: &'a String) -> &'a String {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

RUST TRAITS

THINK: TYPECLASSES
De�ning a new trait

List methods required to implement trait
Can put default implementations

trait Summary {
 fn summarize_author(&self) -> String;

 fn summarize(&self) -> String {
 format!("(Read more from {}...)", self.summarize_author())
 }
}

IMPLEMENTING A TRAIT
Provide missing implementations (or use defaults)

// Our type
struct NewsArticle {
 author: String,
 content: String,
}

// Implementing the trait
impl Summary for NewsArticle {
 fn summarize_author(&self) -> String {
 format!("{}", self.author)
 }

 // leave summarize as default
}

REQUIRING A TRAIT
Function may require parameters implement traits
Put requirements with type parameters

Can require several traits with “+”
Called “trait bounds”

fn cmp_auth<T: Summary + Ord>(x: &T, y: &T) {
 // can use Summary trait
 let auth_x = x.summarize_author();

 // can use Cmp trait
 let cmp_two = x.cmp(y);

 ...
}

REQUIRING A TRAIT
Often cleaner to separate out trait bounds

fn cmp_auth<T>(x: &T, y: &T)
where
 T: Summary + Ord,
 // can list other bounds here
{
 // can use Summary trait
 let auth_x = x.summarize_author();

 // can use Cmp trait
 let cmp_two = x.cmp(y);

 ...
}

TRAITS: EXAMPLES

ORD
Ordering is an enum: Less, Equal, or Greater

Requires PartialOrd and Eq
Self (in caps) is the type with this trait

trait Ord: Eq + PartialOrd {
 fn cmp(&self, other: &Self) -> Ordering;
 // Example: match x.cmp(&y) { ... }

 fn max(self, other: Self) -> Self { ... }
 fn min(self, other: Self) -> Self { ... }
}

CLONE
Types with ability to do deep copy
May be expensive, always explicitly stated

trait Clone {
 fn clone(&self) -> Self;

 // Example: let dolly_two = dolly.clone();
}

// Can also be auto-derived if members are Clone
#[derive(Clone)]
struct Person {
 name: String,
 age: u32,
}

DROP
Add custom behavior when type is dropped

Note: memory is freed no matter what
Implemented by default, usually no need

trait Drop {
 fn drop(&mut self);
}

impl Drop for Person {
 fn drop(&mut self) {
 println!("Don't drop me!!!");
 }
}

FROM/INTO
Conversions from a type, and into a type
Again, conversions always explicit

trait From<T> {
 fn from(other: T) -> Self;
 // Can convert from T's to this type
}

trait Into<T> {
 fn into(self) -> T;
 // Can convert from this type to T's
}

MANY, MANY MORE
Rust makes very liberal use of traits
Many syntax features hook into traits

For loops: IntoIterator
Square-brackets: Index/IndexMut
Dereference: Deref/DerefMut
Operator overloading (+/-/*): Add/Sub/Mult

…

MISSING ANYTHING?

INDUCTIVE DATATYPES?
Can do, but not so easy

Types must have statically known size on stack
Size of inductive datatypes not known statically
First type de�nition is rejected:

enum MyList<T> {
 Nil,
 Cons(T, MyList<T>), // know size of T, but not MyList<T>
}

enum MyListOk<T> {
 Nil,
 Cons(T, Box<MyListOk<T>>), // Box: put inner list on heap
}

FUNCTION TYPES?
No plain arrow types

Size of functions is not statically known
Can’t place data on the stack

Can model various function types using traits (later)

IS THAT REALLY POLYMORPHISM?
Type variables only types with statically-known size

Usually needed to specialize generics
Can override this behavior:

Usually: when working with references to generics
Size not important if we don’t need to move data

// Sized trait: T has size known at compile time
// negative annotation `?Sized`: T *doesn't* need to be Sized
fn foo<T: ?Sized>(t: &T) { ... }

ARE THOSE REALLY TYPECLASSES?
A few differences compared to Haskell
Operations always take instance as �rst argument

Can’t do stuff like Read typeclass:

class Read a where
 read :: String -> a

