LECTURE 1/

Theory and Design of PL (CS 538)
March 25, 2020



REFERENCES



WHAT IS A REFERENGE?

e Anindirect name for some data
= Think: a pointer to some data
e Making a new reference in Rust

let my str = String::from("foo"); // variable holding string
let ref to str = &my str; // reference to my str



WHY USE REFERENCES?

e Reference does not own the data
= Can have only one owner, but many references
e Reference going out of scope does not drop data
= Can “"borrow” reference to function
e Function can take (mutable) reference and modify
caller’'s data directly
= Useful for mutable datastructures



(IM)MUTABLE REFERENCES

e By default, references are immutable
= Can't change underlying data through reference
m Reference type: &T

e Can declare mutable references
= Target must be mutable as well
m Reference type: smut T

let mut my str String::from("foo"); // mutable var

let ref to str

smut my str; // mutable ref to my str



DE-REFERENCING

e Use * notation to get thing reference is pointing at
e Often not needed due to “auto-deref” (magic)

let vr: &Vec<i32> = ...;
println! ("First element: {}", (*vr) [0]); // Explicit deref
println! ("First element: {}", vr[0]); // Implicit deref

println! ("First element: {}", vr.first); // Implicit deref


https://static.rust-lang.org/doc/master/nomicon/dot-operator.html

SOMEWHAT CONFUSINGLY

e Reference itself can be mutable

// Can't change ref or thing it's pointing at
let immut ref to immut = &my string;

// Can't change ref, can change thing it's pointing at
let immut ref to mut = &mut my string;

// Can change ref, can't change thing it's pointing at
let mut mut ref to immut = &my string;
mut ref to immut = &my other string;

// Can change ref and thing it's pointing at
let mut mut ref to mut = &mut my string;

mut ref to mut = &mut my other string;
*mut ref to mut = String::from("??2?2");



WHAT'S GOING ON?

e Mutability is not a property of the data!
= NOT: these bits are mutable or immutable
e Mutability is property of variable or reference
= YES: | can mutate data through this variable
= YES: | cannot mutate data through that reference



ALIASING




MULTIPLE REFERENGES

e Rust works hard to ensure one owner for each data
e Multiple references to same data is problematic

= Also known as aliasing
e References need to follow certain rules for safety



THE GOLDEN RULES

e [n any scope, there can be either:
1. Any number of immutable references
2. At most one mutable reference

e ...referring to the same variable

One or the other: not both!



MULTIPLE IMMUTABLE

e Can have any number of immutable refs to variable
e Safe: none of the refs can change the underlying

let my str = String::from("foo");
let ref one = &my str;
let ref two = &my str;

println! ("Both refs: {} {}", ref one, ref two); // OK



AT MOST ONE MUTABLE

e Canonly change underlying through single reference
= Also important in concurrent setting
= Also enables more optimizations



EXAMPLE

e Can't make two mutable references to same thing

let mut mut str = String::from("foo");
let ref one = gmut mut str; // OK

let ref two = smut mut str; // Not OK



CANTHAVE BOTH MUTABLE AND
IMMUTABLE REFERENCES

let mut mut str = String::from("foo");
let ref one = &mut str; // OK: Immutable ref
let ref two = &mut str; // OK: Immutable ref

let ref three = &mut mut str; // Not OK: Mutable ref



USE SCOPES TO MANAGE REFS

e Rules only apply to references currently in scope

let mut mut str = String::from("foo");

let mut ref = &mut mut str;

mut ref.push("bar"); // OK

mut str.push("baz"); // Not OK: can't access mut str

// because mut ref in scope

// Use scopes!
let mut mut str 2 = String::from("foo");

{

let mut ref 2 = &mut mut str 2;

mut ref 2.push("bar"™); // OK
J // scope ends, mut ref 2 gone

mut str 2.push ("baz"); // Now OK: no more mut ref 2



ALTERNATIVE READING

e Immutable reference: shared reference
m Shared access to some data
m Sharing: can’'t change the data
e Mutable reference: unique reference
m Exclusive access to some data
= Can modify it: no one else has access

Can’t mix shared and unique!



ISN'T A REFERENCE JUST A POINTER?

 |[n machine code: a reference is just a pointer
e |[n Rust: aref. also gives permissions to do things
e With an immutable reference, code can:
s Dereference/read location (obviously)
= Point to/read anything reachable from ref.
e With an mutable reference, code can:
s Dereference/read/write location (obviously)
= Point to/read/write anything reachable from ref.



MUTATION CAN INVALIDATE POINTERS

struct Triple (132, 132, 132);
enum MyEnum {

Small (132),

Big (Triple),

let mut my enum = Big(Triple(l, 2, 3));
let mut im ref: &i32 = &0; // points at 0

1f let Big(b) = my enum {

im ref = &b.2; // points at last field in Big: 3
}
let m ref = &mut my enum; // mutable ref (not allowed)
*m ref = Small (42); // change Big to Small

println! ("Uh oh: {}", im ref); // what does this point to?



PASSING ARGUMENTS:
THREE WAYS




"MOVING™ ARGUMENTS

e Operationally: arguments passed “by value”
e Ownership of argument passes into the function
m Caller can't use arguments after calling!
= “Arguments moved into function”
e Function can return argument to return ownership



EXAMPLE: MOVE

fn take own(s: String) { ... }

fn main()
let my string = String::from("Hello!");

take own (my string); // Pass the string to function

println! ("Still there? {}", my string); // Not OK: it's gone!
}



EXAMPLE: MUTABLE MOVE

e Not super intuitive behavior...

fn take mut own(s: mut String) { s = String::from("wow") ; }

// Pretty much the same as:
fn take own(s: String) {

let mut owned string = s;
owned string = String::from("amazing") ;
}
fn main () {
let my string = String::from("Hello!"); // Isn't mutable...
take mut own (my string); // ... but this works?

println! ("Still there? {}", my string); // Not OK: it's gone!
}



"BORROWING™ ARGUMENTS

e Operationally: arguments passed “by reference”
e Ownership of argument doesn’t change

= Original owner (caller, caller-of-caller, ...) owns arg.
e “Function borrows arguments” (from the owner)

= Will give it back to owner when done with it



EXAMPLE: BORROW

fn take borrow(s: &String) { ... } // Can't mutate s

fn main()
let my string = String::from("Hello!");

take borrow (&my string); // "Borrow" ref to fn

println! ("Still there? {}", my string); // OK: still owner
}



EXAMPLE: MUTABLE BORROW

fn take mut borrow(s: &mut String) {
// Assign new string to s
*s = String::from("amazing") ;

fn main() {
let mut my string = String::from("Hello!"™); // Note: need mut!
take mut borrow (&mut my string); // "Borrow'" ref mut

println! ("Still there? {}", my string); // OK: still owner
}



MATCRING, MOVING,
BORROWING




VARIABLES ARE KEY

e Anywhere there are variables:
= Think about ownership rules
= Think about borrowing rules

e So far, we've seen variables from:
m | et-bindings
= Function arguments




A PUZLLE

let my str = String::from("Hello world!");
let maybe str = Some (my str);

match maybe str {
None => println! ("Nothing!"),

some (s) => println! ("Something!"),

)

println! ("Still there? {}", maybe str.is none());

e |sthis program accepted, or not?
e What is ownership situation of s?



MATCRING CAN MOVE DATA

e Often: matching on enums with data inside
s Example: Option<T>
e The inner data is moved into the match arm
= Variable from match arm has ownership
e Typical ownership rules apply
= Datais dropped at the end of the arm




REVISITING

let my str = String::from("Hello world!");
let maybe str = Some (my str);

match maybe str {
None => println! ("Nothing!"),
Some (s) => println! ("Something!"), // String *moved* into s
// s dropped here

println! ("Still there? {}", maybe str.is none()); // Not OK!

e Evenmaybe strisdropped:inner s is gone!



MATCRING AND BORROWING

let my str = String::from("Hello world!");
let maybe str = Some (my str);
let maybe ref = &maybe str;

match maybe ref {

None => println! ("Nothing!"),

Some (s) => println! ("Something: {}", s), // what is type of s?
}

println! ("Sti1ll there? {}", maybe str.is none());

e |sthis program accepted or not?
e What'’s the ownership status of s?



MATCRING ON A REFERENCE

e Rust will infer how to borrow inner values
= Matching on &T type: arms borrow immutably

= Matchingon &émut T type: arms borrow mutably

e Also called “default binding modes”
= Usually: Just Works
= Sometimes: inference goes wrong (Doesn’t Work)



https://github.com/rust-lang/rfcs/blob/master/text/2005-match-ergonomics.md

IMMUTABLE BORROW

let my str = String::from("Hello world!");
let maybe str = Some (my str);
let maybe ref = &maybe str; // immutable ref

match maybe ref { // match on *immutable* ref

None => println! ("Nothing!"),
Some (s) => println! ("Something: {}", s), // can't mutate s

println! ("Still there? {}", maybe str.is none());



MUTABLE BORROW

let my str = String::from("Hello world!");
let mut maybe str = Some (my str);
let maybe ref = a&mut maybe str; // mutable ref

match maybe ref { // match on *mutable* ref
None => println! ("Nothing!"),
Some (s) => *s = String::from("Good bye!"), // mutate s

println! ("What's here? {}", maybe str.unwrap());

e Prints the new string: Good bye!



FORCING A BORROW

e Can force match to borrow on owned data

let my str = String::from("Hello world!");
let mut maybe str = Some (my str);

match &maybe str { // force immutable borrow
None => println! ("Nothing!"),
Some (s) => println! ("Something: {}", s), // can't mutate s

match e¢mut maybe str { // force mutable borrow
None => println! ("Nothing!"),
Some (s) => *s = String::from("Good bye!"), // mutate s



OLD-STYLE SYNTAX

let my str = String::from("Hello world!");
let mut maybe str = Some (my str);

match maybe str { // force immutable borrow
None => println! ("Nothing!"),
Some (ref s) => println! ("Something: {}", s), // can't mutate s

match maybe str { // force mutable borrow
None => println! ("Nothing!"),
Some (ref mut s) => *s = String::from("Good bye!"), // mutate s

e "Deprecated’, but try it if you have bizarre errors



