
LECTURE 17
Theory and Design of PL (CS 538)

March 25, 2020

REFERENCES

WHAT IS A REFERENCE?
An indirect name for some data

Think: a pointer to some data
Making a new reference in Rust

let my_str = String::from("foo"); // variable holding string
let ref_to_str = &my_str; // reference to my_str

WHY USE REFERENCES?
Reference does not own the data

Can have only one owner, but many references
Reference going out of scope does not drop data

Can “borrow” reference to function
Function can take (mutable) reference and modify
caller’s data directly

Useful for mutable datastructures

(IM)MUTABLE REFERENCES
By default, references are immutable

Can’t change underlying data through reference
Reference type: &T

Can declare mutable references
Target must be mutable as well
Reference type: &mut T

let mut my_str = String::from("foo"); // mutable var
let ref_to_str = &mut my_str; // mutable ref to my_str

DE-REFERENCING
Use * notation to get thing reference is pointing at
Often not needed due to “auto-deref” ()magic

let vr: &Vec<i32> = ...;

println!("First element: {}", (*vr)[0]); // Explicit deref

println!("First element: {}", vr[0]); // Implicit deref

println!("First element: {}", vr.first); // Implicit deref

https://static.rust-lang.org/doc/master/nomicon/dot-operator.html

SOMEWHAT CONFUSINGLY
Reference itself can be mutable

// Can't change ref or thing it's pointing at
let immut_ref_to_immut = &my_string;

// Can't change ref, can change thing it's pointing at
let immut_ref_to_mut = &mut my_string;

// Can change ref, can't change thing it's pointing at
let mut mut_ref_to_immut = &my_string;
mut_ref_to_immut = &my_other_string;

// Can change ref and thing it's pointing at
let mut mut_ref_to_mut = &mut my_string;
mut_ref_to_mut = &mut my_other_string;
*mut_ref_to_mut = String::from("???");

WHAT’S GOING ON?
Mutability is not a property of the data!

NOT: these bits are mutable or immutable
Mutability is property of variable or reference

YES: I can mutate data through this variable
YES: I cannot mutate data through that reference

ALIASING

MULTIPLE REFERENCES
Rust works hard to ensure one owner for each data
Multiple references to same data is problematic

Also known as aliasing
References need to follow certain rules for safety

THE GOLDEN RULES
In any scope, there can be either:
1. Any number of immutable references
2. At most one mutable reference
… referring to the same variable

One or the other: not both!

MULTIPLE IMMUTABLE
Can have any number of immutable refs to variable
Safe: none of the refs can change the underlying

let my_str = String::from("foo");
let ref_one = &my_str;
let ref_two = &my_str;

println!("Both refs: {} {}", ref_one, ref_two); // OK

AT MOST ONE MUTABLE
Can only change underlying through single reference

Also important in concurrent setting
Also enables more optimizations

EXAMPLE
Can’t make two mutable references to same thing

let mut mut_str = String::from("foo");

let ref_one = &mut mut_str; // OK

let ref_two = &mut mut_str; // Not OK

CAN’T HAVE BOTH MUTABLE AND
IMMUTABLE REFERENCES

let mut mut_str = String::from("foo");

let ref_one = &mut_str; // OK: Immutable ref

let ref_two = &mut_str; // OK: Immutable ref

let ref_three = &mut mut_str; // Not OK: Mutable ref

USE SCOPES TO MANAGE REFS
Rules only apply to references currently in scope

let mut mut_str = String::from("foo");
let mut_ref = &mut mut_str;
mut_ref.push("bar"); // OK
mut_str.push("baz"); // Not OK: can't access mut_str
 // because mut_ref in scope

// Use scopes!
let mut mut_str_2 = String::from("foo");
{
 let mut_ref_2 = &mut mut_str_2;
 mut_ref_2.push("bar"); // OK
} // scope ends, mut_ref_2 gone
mut_str_2.push("baz"); // Now OK: no more mut_ref_2

ALTERNATIVE READING
Immutable reference: shared reference

Shared access to some data
Sharing: can’t change the data

Mutable reference: unique reference
Exclusive access to some data
Can modify it: no one else has access

Can’t mix shared and unique!

ISN’T A REFERENCE JUST A POINTER?
In machine code: a reference is just a pointer
In Rust: a ref. also gives permissions to do things
With an immutable reference, code can:

Dereference/read location (obviously)
Point to/read anything reachable from ref.

With an mutable reference, code can:
Dereference/read/write location (obviously)
Point to/read/write anything reachable from ref.

MUTATION CAN INVALIDATE POINTERS
struct Triple(i32, i32, i32);
enum MyEnum {
 Small(i32),
 Big(Triple),
}

let mut my_enum = Big(Triple(1, 2, 3));
let mut im_ref: &i32 = &0; // points at 0
if let Big(b) = my_enum {
 im_ref = &b.2; // points at last field in Big: 3
}

let m_ref = &mut my_enum; // mutable ref (not allowed)
*m_ref = Small(42); // change Big to Small
println!("Uh oh: {}", im ref); // what does this point to?

PASSING ARGUMENTS:
THREE WAYS

“MOVING” ARGUMENTS
Operationally: arguments passed “by value”
Ownership of argument passes into the function

Caller can’t use arguments after calling!
“Arguments moved into function”

Function can return argument to return ownership

EXAMPLE: MOVE
fn take_own(s: String) { ... }

fn main() {
 let my_string = String::from("Hello!");

 take_own(my_string); // Pass the string to function

 println!("Still there? {}", my_string); // Not OK: it's gone!
}

EXAMPLE: MUTABLE MOVE
Not super intuitive behavior…

fn take_mut_own(s: mut String) { s = String::from("wow"); }

// Pretty much the same as:
fn take_own(s: String) {
 let mut owned_string = s;
 owned_string = String::from("amazing");
}

fn main() {
 let my_string = String::from("Hello!"); // Isn't mutable...
 take_mut_own(my_string); // ... but this works?
 println!("Still there? {}", my_string); // Not OK: it's gone!
}

“BORROWING” ARGUMENTS
Operationally: arguments passed “by reference”
Ownership of argument doesn’t change

Original owner (caller, caller-of-caller, …) owns arg.
“Function borrows arguments” (from the owner)

Will give it back to owner when done with it

EXAMPLE: BORROW
fn take_borrow(s: &String) { ... } // Can't mutate s

fn main() {
 let my_string = String::from("Hello!");

 take_borrow(&my_string); // "Borrow" ref to fn

 println!("Still there? {}", my_string); // OK: still owner
}

EXAMPLE: MUTABLE BORROW
fn take_mut_borrow(s: &mut String) {
 // Assign new string to s
 *s = String::from("amazing");
}

fn main() {
 let mut my_string = String::from("Hello!"); // Note: need mut!

 take_mut_borrow(&mut my_string); // "Borrow" ref mut

 println!("Still there? {}", my_string); // OK: still owner
}

MATCHING, MOVING,
BORROWING

VARIABLES ARE KEY
Anywhere there are variables:

Think about ownership rules
Think about borrowing rules

So far, we’ve seen variables from:
Let-bindings
Function arguments

A PUZZLE

Is this program accepted, or not?
What is ownership situation of s?

let my_str = String::from("Hello world!");
let maybe_str = Some(my_str);

match maybe_str {
 None => println!("Nothing!"),
 Some(s) => println!("Something!"),
}

println!("Still there? {}", maybe_str.is_none());

MATCHING CAN MOVE DATA
Often: matching on enums with data inside

Example: Option<T>
The inner data is moved into the match arm

Variable from match arm has ownership
Typical ownership rules apply

Data is dropped at the end of the arm

REVISITING

Even maybe_str is dropped: inner s is gone!

let my_str = String::from("Hello world!");
let maybe_str = Some(my_str);

match maybe_str {
 None => println!("Nothing!"),
 Some(s) => println!("Something!"), // String *moved* into s
 // s dropped here
}

println!("Still there? {}", maybe_str.is_none()); // Not OK!

MATCHING AND BORROWING

Is this program accepted or not?
What’s the ownership status of s?

let my_str = String::from("Hello world!");
let maybe_str = Some(my_str);
let maybe_ref = &maybe_str;

match maybe_ref {
 None => println!("Nothing!"),
 Some(s) => println!("Something: {}", s), // what is type of s?
}

println!("Still there? {}", maybe_str.is_none());

MATCHING ON A REFERENCE
Rust will infer how to borrow inner values

Matching on &T type: arms borrow immutably

Matching on &mut T type: arms borrow mutably

Also called “ ”
Usually: Just Works
Sometimes: inference goes wrong (Doesn’t Work)

default binding modes

https://github.com/rust-lang/rfcs/blob/master/text/2005-match-ergonomics.md

IMMUTABLE BORROW
let my_str = String::from("Hello world!");
let maybe_str = Some(my_str);
let maybe_ref = &maybe_str; // immutable ref

match maybe_ref { // match on *immutable* ref
 None => println!("Nothing!"),
 Some(s) => println!("Something: {}", s), // can't mutate s
}

println!("Still there? {}", maybe_str.is_none());

MUTABLE BORROW

Prints the new string: Good bye!

let my_str = String::from("Hello world!");
let mut maybe_str = Some(my_str);
let maybe_ref = &mut maybe_str; // mutable ref

match maybe_ref { // match on *mutable* ref
 None => println!("Nothing!"),
 Some(s) => *s = String::from("Good bye!"), // mutate s
}

println!("What's here? {}", maybe_str.unwrap());

FORCING A BORROW
Can force match to borrow on owned data

let my_str = String::from("Hello world!");
let mut maybe_str = Some(my_str);

match &maybe_str { // force immutable borrow
 None => println!("Nothing!"),
 Some(s) => println!("Something: {}", s), // can't mutate s
}

match &mut maybe_str { // force mutable borrow
 None => println!("Nothing!"),
 Some(s) => *s = String::from("Good bye!"), // mutate s
}

OLD-STYLE SYNTAX

“Deprecated”, but try it if you have bizarre errors

let my_str = String::from("Hello world!");
let mut maybe_str = Some(my_str);

match maybe_str { // force immutable borrow
 None => println!("Nothing!"),
 Some(ref s) => println!("Something: {}", s), // can't mutate s
}

match maybe_str { // force mutable borrow
 None => println!("Nothing!"),
 Some(ref mut s) => *s = String::from("Good bye!"), // mutate s
}

