
LECTURE 16
Theory and Design of PL (CS 538)

March 23, 2020

WELCOME BACK TO
(VIRTUAL) 538!

LOGISTICS
1. Mute your microphone
2. Click raise-hand to ask question
3. Ask questions on : #CS538sli.do

http://sli.do/

HW3 WRAPUP
You implemented a lot of things:
0. Syntax: from grammar to Haskell datatype
1. Evaluator: from spec to code
2. Parser: applicative/monadic parsing
3. REPL: IO monad
Ruse language

Toy version of Clojure/Scheme/Lisp
Lambda calculus with bells and whistles
Already quite powerful

FEEDBACK ON HW3?

HW4 OUT
Four optional exercises
Main piece: writing a RPN calculator
WR4: Started material before break

Take a look at the notes in WR4

RUST’S RESULT TYPE
Similar to Either
Parametrized by type T and error type E

enum Result<T, E> {
 Ok(T),
 Err(E),
}

let all_ok = Ok("Everything ok!");
let error = Err("Something went wrong!");

A FAMILIAR PATTERN
Sequence error-prone computations
Bail out as soon as we hit the �rst error

let res_1 = foo(x);
match res_1 {
 Err(e_1) => return Err(e_1);
 Ok(val_1) => {
 let res_2 = bar(val_1);
 match res_2 {
 Err(e_2) => return Err(e_2);
 Ok(val_2) => {
 let res_3 = baz(val_2);
 match res_3 { ... }
 }
 }
 }
}

PROPAGATING ERRORS
Fixing error type, Result is a monad!

No monads/do-notation in Rust, but: special syntax
? unwraps value if Ok, or returns from function if Err

let val_1 = foo(x)?; // When foo returns a Result
let val_2 = bar(y?); // When y has type Result

MEMORY MANAGEMENT

PROGRAMS USE MEMORY
Common across all programming languages
During execution, a program may:

Request some amount of memory to use (allocate)
Return memory that it no longer needs (free)
System only hands out memory that is free

STACK ALLOCATION
System keeps track of one address, the top of stack

Everything below top is allocated
Everything above top is free

Last-in, �rst-out
To allocate: increase the top pointer
To deallocate: decrease the top pointer

STACK: BENEFITS
Very fast

Allocating/deallocating is addition/subtraction
Lookups calculate offset of stack pointer

Natural �t to block languages
When entering a block, allocate memory
When exiting a block, deallocate memory
Function calls/returns are similar

STACK: DRAWBACKS
Allocation sizes must be �xed

Can’t grow/shrink previously allocated memory
Size of each allocation must be known statically

Memory can’t persist past end of block
Memory allocated in function is freed on return

HEAP ALLOCATION
Memory divided up into a bunch of small blocks
System provides an allocator (e.g., malloc)

Keeps track of allocated/free blocks
Programs request amount of memory from allocator
Programs free memory by calling allocator

HEAP: BENEFITS
Flexibility

Allocation sizes don’t need to be statically known
Can resize by allocating more and/or copying

Persistence
Memory remains live until programs free it
Don’t have to free memory at end of blocks

HEAP: DRAWBACKS
De-allocation is very easy to mess up

Double free: memory freed twice
Use-after-free: memory used after it was freed
Memory leak: program forgot to free memory

Bugs are notoriously dif�cult to �nd
Security holes, out of memory, crashes, etc.

WHO FREES HEAP
MEMORY?

MANUAL MANAGEMENT
Common in low-level programming languages
Bene�ts

Fastest, gives the programmer full control
Drawbacks

Programmers often mess up
Bugs can be very hard to �nd

REFERENCE COUNTING
Memory tracks how many things are pointing at it
When count goes from one to zero, de-allocate

“Last one out, please turn off the lights”
Bene�ts

Programmer doesn’t think about management
Drawbacks

May leak memory if there are cycles
Need to constantly track counts for all allocations
Need to be sure the count is right

GARBAGE COLLECTOR (GC)
System periodically sweeps through heap

Marks unreachable memory as free
Common in high-level programming languages

Bene�ts
Programmer doesn’t think about management
Eliminate memory-management bugs

Drawbacks
Slower, GC performance unpredictable
Maybe need a separate GC thread, pauses

THE STACK AND HEAP
IN RUST

WHAT GOES ON THE STACK?
Rough rule: anything with size
1. known at compile time, AND
2. �xed throughout execution
Examples

Integers, pairs of integers, etc.

WHAT GOES ON THE HEAP?
Rough rule: anything with size
1. not known at compile time, OR
2. varying throughout execution
Examples: mutable datastructures

Vectors, maps, mutable strings

TYPICALLY: A BIT OF BOTH
On stack: constant size data
On heap: variable size data

EXAMPLE: STRINGS

On stack: length (int), capacity (int), pointer to heap
On heap: actual contents of string

let s = String::from("hello");

THE OWNERSHIP MODEL
IN RUST

BEST OF BOTH WORLDS
Programmer follows certain ownership rules

Compiler knows where to insert de-allocation calls
Perfect memory management without GC

However: programmer has to think a bit!
If rules are broken, the compiler complains
May need to add information to convince compiler

BASED ON C++ IDEA: RAII
Resource Acquisition Is Initialization
One of the worst names in the history of PL

Not really about acquision
Not really about initialization
It is about resources

Idea: when object goes out of scope, do cleanup

A POWERFUL IDEA
Applies to many kinds of resources

Memory is not the only kind of resource!
File handles and network sockets

Auto close when handle goes out of scope
Locks and concurrency primitives

Auto unlock when value goes out of scope

OWNERSHIP PRINCIPLES
1. Each piece of data has a variable that is its owner.
2. Data can only have one owner at any time.
3. When owner goes out of scope, data is dropped.

EXAMPLE

String allocated on the heap and owned by variable s
Variable s goes out of scope at end of block
String is automatically de-allocated at end of block

{
 let s = String::from("foo");

 // do stuff ...

} // s goes out of scope here

MOVING, COPYING,
CLONING

MOVING OWNERSHIP
What happens when we assign a variable to another?

let x = String::from("foo");

let y = x;

DEPENDS ON THE TYPE!
Default: ownership is moved from x to y

Before: x owns the string
After: y owns the string and x does not

Shallow copy
Portion of data on the stack is copied
Portion of data on heap is not copied
Result: two things on stack pointing to same heap

ACCESSING DATA
Remember: only one owner at a time
Only the owner can read/modify the data

let x = String::from("foo"); // owner: x

let y = x; // owner: y

println!("String: {}", y); // OK

println!("String: {}", x); // Not OK

let z = y; // owner: z

println!("String: {}", y); // Not OK

println!("String: {}", z); // OK

COPY INSTEAD OF MOVING?
For stack data: often easier to copy rather than move
Controlled via the Copy trait

Assigning makes copy implicitly
Doesn’t invalidate previous variables

let x = 5;
let y = x; // automatically copied

println!("x = {}, y = {}", x, y); // x is still valid!

EXPLICIT COPIES
Sometimes, want to copy heap data too (deep copy)
Clone trait provides .clone() to do deep copy

Explicit: not automatic (might be expensive)

Before: one string owned by s
After: two separate strings, owned by s and t

let s = String::from("foo");
let t = s.clone();

// can use both s and t
println!("s = {}, t = {}", s, t);

SUMMARY
Default: assignment moves ownership
Copy: assignment copies data, no heap data

Clone: make explicit copy by calling .clone()

DROPPING

FREEING MEMORY
When memory is no longer needed, return to system

Forget to return: memory leak!
Would be nice: compiler inserts calls to free
But how to know when to free?

Might depend on runtime behavior

DROPPING
Idea: compiler knows where variable leaves scope

This is known at compile time
Automatically insert call to free memory here

Data has exactly one owner
Every data is freed once (and only once)

Result: avoid memory leaks in Rust

IN MORE DETAIL
Compiler inserts calls to mem::drop

Can also call manually, if you want
Also known as a destructor

Default behavior: data is dropped recursively

DROPPING STRUCTS

Dropping a MyStruct1
Drop foo, then bar, then “wrapper”

Dropping a MyStruct2
Drop baz, then “wrapper”

struct MyStruct1 { foo: MyStruct2, bar: String }
struct MyStruct2 { baz: String }

DROPPING ENUMS

Dropping a MyEnum1
Drop foo OR bar, then “wrapper”

Dropping a MyEnum2
Drop baz, then “wrapper”

enum MyEnum1 { foo(MyEnum2), bar(String) }
enum MyEnum2 { baz(String) }

CUSTOMIZING
Run custom code when dropping

Print out stuff
Call other functions
Close �le/connection
Change order things are dropped

DROP TRAIT
Can customize the following method:

Does not take ownership of data
Instead: takes mutable reference to data

Can mutate, replace, Option::take(), …

Data always freed when owner goes out of scope
No way to override (screw up) that part

fn drop(&mut self) { ... } // Note the type!!

DEMO

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=2f3c537ce8b5cbb25107d44166f6c148

FUNCTIONS AND
OWNERSHIP

PASSING AN ARGUMENT
Function call moves ownership of arguments
Think: new owner is argument variable in function
When function ends, usual drop rules apply

fn main() {
 let old = String::from("foo"); // owner: old

 move_owner(old); // ownership moved

 println!("old is {}", old); // Not OK: old is not owner
}

fn move_owner(new: String) {
 println!("new is {}", new); // OK: new is owner
 ...
} // new out of scope, drops

RETURNING FROM FUNCTION
Return values are similar: move ownership
Think: new owner is variable holding return value
If caller doesn’t store return value, it is dropped

fn main() {
 let new = take_owner(); // owner: new
 println!("new is {}", new); // OK: new is owner
}

fn take_owner() -> String {
 let old = String::from("foo"); // owner: old
 println!("old is {}", old); // OK: old is owner
 // ...
 old // returns, ownership moved
} // old out of scope, but don't drop

AN ANNOYING PATTERN
If caller wants to keep ownership of arguments,
function must return arguments to return ownership

fn main() {
 let my_str = String::from("foo"); // owner: my_str

 let my_other_str = take_and_return(my_str); // get ownership b
}

fn take_and_return(a_str: String) -> String { // owner: a_str
 // ... do some stuff ...

 // return ownership of a_str
 a_str
}

BORROWING A REFERENCE
Make argument a reference

No need to return ownership after function
Other languages: “passing by reference”

fn main() {
 let my_str = String::from("foo"); // owner: my_str
 let my_ref = &my_str; // owner: still my_str

 borrow(my_ref); // owner: still my_str
}

fn borrow(a_ref: &String) { // owner: my_str
 // ... use reference a_ref ...

 // don't need to return ownership
}

MOVING OUT OF REF?
Can’t move data from a borrow

“Can’t move out of borrowed context”

fn borrow(a_ref: &mut String) {
 *a_ref = String::from("foo"); // OK: update a_ref

 let my_string: String = *a_ref; // bad: can't move String

 take_own(a_ref); // also bad!
}

fn take_own(a_str: String) { ... }

