LECTURE 16

Theory and Design of PL (CS 538)
March 23, 2020



WELCOME BACK T0
(VIRTUAL) 538!




LOGISTICS

1. Mute your microphone

2. Click raise-hand to ask question
3. Ask questions on sli.do: #CS538


http://sli.do/

HW3 WRAPUP

e You implemented a lot of things:
0. Syntax: from grammar to Haskell datatype
1. Evaluator: from spec to code
2. Parser: applicative/monadic parsing
3. REPL: 10 monad
e Ruse language
= Toy version of Clojure/Scheme/Lisp
= | ambda calculus with bells and whistles
= Already quite powerful



FEEDBACK ON HW3?



W4 OUT

e Four optional exercises

e Main piece: writing a RPN calculator

e WR4: Started material before break
= Take a look at the notes in WR4



RUST'S RESULT TYPE

e Similar to Either
e Parametrized by type T and error type E

enum Result<T, E> {
Ok (T),
Frr (E),

}

let all ok
let error

Ok ("Everything ok!");
Err ("Something went wrong!");



A FAMILIAR PATTERN

e Sequence error-prone computations
e Bail out as soon as we hit the first error

let res 1 = foo(x);
match res 1 {
Err(e 1) => return Err(e 1);

Ok (val 1) => {
let res 2 = bar(val 1);
match res 2 {
Err (e 2) => return Err (e 2);
Ok (val 2) => {
let res 3 = baz(val 2);
match res 3 { ... }
J
J
J
J



PROPAGATING ERRORS

e Fixing error type, Result isamonad!

e No monads/do-notation in Rust, but: special syntax
e 2 unwraps value if Ok, or returns from function if Err

let val 1
let val 2

foo(x)?; // When foo returns a Result
; // When y has type Result

Il
-
Q
S
pe
D



MEMORY MANAGEMENT



PROGRAMS USE MEMORY

e Common across all programming languages

e During execution, a program may:
s Request some amount of memory to use (allocate)
s Return memory that it no longer needs (free)
= System only hands out memory that is free



STAGK ALLOCATION

e System keeps track of one address, the top of stack
= Everything below top is allocated
= Everything above top is free
o Last-in, first-out
= To allocate: increase the top pointer
= To deallocate: decrease the top pointer



STACK: BENEFITS

e Very fast
» Allocating/deallocating is addition/subtraction
= | ookups calculate offset of stack pointer
e Natural fit to block languages
= WWhen entering a block, allocate memory
= \WWhen exiting a block, deallocate memory
= Function calls/returns are similar



STACK: DRAWBACHS

e Allocation sizes must be fixed
= Can't grow/shrink previously allocated memory
= Size of each allocation must be known statically
e Memory can't persist past end of block
= Memory allocated in function is freed on return




HEAP ALLOCATION

e Memory divided up into a bunch of small blocks
e System provides an allocator (e.g., malloc)
m Keeps track of allocated/free blocks
e Programs request amount of memory from allocator
e Programs free memory by calling allocator



HEAP: BENEFITS

o Flexibility
= Allocation sizes don't need to be statically known
= Canresize by allocating more and/or copying
e Persistence
= Memory remains live until programs free it
= Don't have to free memory at end of blocks



HEAP: DRAWBACKS

e De-allocation is very easy to mess up
= Double free: memory freed twice
m Use-after-free: memory used after it was freed
= Memory leak: program forgot to free memory
e Bugs are notoriously difficult to find
e Security holes, out of memory, crashes, etc.



WHO FREES HEAP
MEMORY?




MANUAL MANAGEMENT

e Common in low-level programming languages
e Benefits

m Fastest, gives the programmer full control
e Drawbacks

= Programmers often mess up

= Bugs can be very hard to find



REFERENCE COUNTING

e Memory tracks how many things are pointing at it
e When count goes from one to zero, de-allocate
= “Last one out, please turn off the lights”
e Benefits
= Programmer doesn’t think about management
e Drawbacks
= May leak memory If there are cycles
= Need to constantly track counts for all allocations
= Need to be sure the count is right



GARBAGE COLLECTOR (GC)

e System periodically sweeps through heap
= Marks unreachable memory as free
= Common In high-level programming languages
e Benefits
= Programmer doesn’t think about management
= Eliminate memory-management bugs
e Drawbacks
= Slower, GC performance unpredictable
= Maybe need a separate GC thread, pauses



THE STACK AND HEAP
IN RUST




WHAT GOES ON THE STACK?

e Rough rule: anything with size
1. known at compile time, AND
2. fixed throughout execution

e Examples
m |ntegers, pairs of integers, etc.



WHAT GOES ON THE HEAP?

e Rough rule: anything with size
1. not known at compile time, OR
2. varying throughout execution

e Examples: mutable datastructures
= \ectors, maps, mutable strings



TYPICALLY: A BIT OF BOTH

e On stack: constant size data
e On heap: variable size data




EXAMPLE: STRINGS

let s = String::from("hello");

e On stack: length (int), capacity (int), pointer to heap
e On heap: actual contents of string



THE OWNERSHIP MODEL
IN RUST




BEST OF BOTH WORLDS

e Programmer follows certain ownership rules
= Compiler knows where to insert de-allocation calls
m Perfect memory management without GC
e However: programmer has to think a bit!
= |f rules are broken, the compiler complains
= May need to add information to convince compiler



BASED ON C-+-+ IDEA: RAI

e Resource Acquisition Is Initialization
e One of the worst names in the history of PL
= Not really about acquision
= Not really about initialization
= |tis about resources
e |dea: when object goes out of scope, do cleanup



A POWERFUL IDEA

e Applies to many kinds of resources

= Memory is not the only kind of resource!
e File handles and network sockets

= Auto close when handle goes out of scope
e L ocks and concurrency primitives

= Auto unlock when value goes out of scope



OWNERSHIP PRINCIPLES

1. Each piece of data has a variable that is its owner.
2. Data can only have one owner at any time.
3. When owner goes out of scope, data is dropped.



EXAMPLE

{

let s = String::from("foo");
// do stuff ...

} // s goes out of scope here

e String allocated on the heap and owned by variable s
e Variable s goes out of scope at end of block
e String is automatically de-allocated at end of block



MOVING, COPYING,
CLONING




MOVING OWNERSRIP

e What happens when we assign a variable to another?

let x = String::from("foo");

let v = x;



DEPENDS ON THE TYPE!

e Default: ownership is moved from x toy
s Before: x owns the string
= After: y owns the string and x does not
e Shallow copy
= Portion of data on the stack is copied
= Portion of data on heap is not copied
m Result: two things on stack pointing to same heap



ACCESSING DATA

e Remember: only one owner at a time
e Only the owner can read/modify the data

let x = String::from("foo"); // owner: x
let v = x; // owner: y
println! ("String: {}", vVv); // OK
println! ("String: {}", x); // Not OK
let z = vy; // owner: z
println! ("String: {}", V) // Not OK

println! ("String: {}", z); // OK



COPY INSTEAD OF MOVING?

e For stack data: often easier to copy rather than move
e Controlled via the Copy trait

m Assigning makes copy implicitly
= Doesn't invalidate previous variables

let x
let vy

// automatically copied

println! ("x = {}, v = {}", x, yv); // x 1s still valid!



EXPLICIT COPIES

e Sometimes, want to copy heap data too (deep copy)
e Clone trait provides .clone () todo deep copy

e Explicit: not automatic (might be expensive)

let s = String::from("foo")
let t = s.clone();

// can use both s and t
println! ("s = {}, t = {}", s, t);

e Before: one string owned by s
e After: two separate strings, owned by s and t



SUMMARY

e Default: assignment moves ownership
e Copy: assignment copies data, no heap data

e Clone: make explicit copy by calling . clone ()




DROPPING



FREEING MEMORY

e When memory is no longer needed, return to system
= Forget to return: memory leak!

e \WWould be nice: compiler inserts calls to free

e But how to know when to free?
= Might depend on runtime behavior




DROPPING

e |dea: compiler knows where variable leaves scope
= Thisis known at compile time
s Automatically insert call to free memory here

e Data has exactly one owner
s Fvery datais freed once (and only once)

Result: avoid memory leaks in Rust



IN MORE DETAIL

e Compilerinserts callstomem: : drop

= Can also call manually, if you want
= Also known as a destructor
e Default behavior: data is dropped recursively



DROPPING STRUCTS

struct MyStructl { foo: MyStructZ2, bar: String }
struct MyStruct2 { baz: String }

e DroppingaMyStructl

= Drop foo, thenbar, then “wrapper”
e DroppingaMyStruct?2

= Drop baz, then “wrapper”




DROPPING ENUMS

enum MyEnuml { foo (MyEnumZ2), bar(String) }
enum MyEnum2 { baz (String) }

e Dropping aMyEnuml

m Drop foo ORbar, then “wrapper”
e Dropping a MyEnum?2

= Drop baz, then “wrapper”




CUSTOMIZING

e Run custom code when dropping
® Print out stuff
= Call other functions
m Close file/connection
= Change order things are dropped




DROP TRAIT

e Can customize the following method:

fn drop (&mut self) { ... } // Note the type!!

e Does not take ownership of data
e |[nstead: takes mutable reference to data
= Can mutate, replace, Option: :take (),...

e Data always freed when owner goes out of scope
= No way to override (screw up) that part





https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=2f3c537ce8b5cbb25107d44166f6c148

FUNCTIONS AND
OWNERSHIP




PASSING AN ARGUMENT

e Function call moves ownership of arguments
e Think: new owner is argument variable in function
e When function ends, usual drop rules apply

fn main() {
let old = String::from("foo"); // owner: old
move owner (old) ; // ownership moved
println! ("old is {}", old); // Not OK: old 1is not owner

)

fn move owner (new: String) {
println! ("new is {}", new); // OK: new 1S owner

} // new out of scope, drops



RETURNING FROM FUNCTION

e Return values are similar: move ownership
e Think: new owner is variable holding return value
o If caller doesn’t store return value, it is dropped

fn main() {
let new = take owner(); // owner: new
println! ("new is {}", new); // OK: new 1s owner
}
fn take owner () -> String {
let old = String::from("foo"); // owner: old
println! ("old is {}", old); // OK: old is owner
VA
old // returns, ownership moved

} // old out of scope, but don't drop



AN ANNOYING PATTERN

e |f caller wants to keep ownership of arguments,
function must return arguments to return ownership

fn main() {
let my str = String::from("foo"); // owner: my Str
let my other str = take and return(my str); // get ownership
}
fn take and return(a str: String) -> String { // owner: a str
// ... do some stuff ...

// return ownership of a str
a str



BORROWING A REFERENGE

e Make argument a reference
= No need to return ownership after function
= Other languages: “passing by reference”

fn main() {
let my str = String::from("foo"); // owner: my str
let my ref = &my str; // owner: still my str
borrow (my ref); // owner: still my str
}
fn borrow(a ref: &String) // owner: my Str
// ... use reference a ref ...

// don't need to return ownership

J



MOVING OUT OF REF?

e Can't move data from a borrow
s “Can’t move out of borrowed context”

fn borrow(a ref: &mut String) {
*a ref = String::from("foo"); // OK: update a ref

let my string: String = *a ref; // bad: can't move String

take own(a ref); // also bad!
}

fn take own(a str: String) { ... }



