
LECTURE 15
Theory and Design of PL (CS 538)

March 11, 2020

TYPES IN RUST

NUMBERS
Full range of integer types
i32 is signed 32-bit, u8 is unsigned 8-bit, …

Floating point types
f32 is 32-bit �oating, f64 is 64-bit, …

TYPES INFERENCE
Most types inferred, sometimes annotations needed

Single :, not double ::
Type conversions using as

let guess = "42".parse(); // what type to parse to?
let guess_u16: u16 = "42".parse();
let guess_u32: u32 = "42".parse();

let guess_u64: u64 = guess_u32 as u64;

BOOLS AND CHARS

Rust designed with support for UTF-8

let my_true_bool = true;

let my_false_bool: bool = false; // with annotation

let little_z = 'z';
let fancy_z = 'ℤ';
let heart_eyed_cat = '😻';

STRUCTS
Very similar to records (big tuples)
First, de�ne names and types of the �elds:

struct User {
 username: String,
 email: String,
 sign_in_count: u64,
 active: bool,
}

CREATING AND ACCESSING
Record syntax for creating, dot-syntax for accessing:

// make a struct variable of type User
let user1 = User {
 email: String::from("someone@example.com"),
 username: String::from("someusername123"),
 active: true,
 sign_in_count: 1,
};

// access various fields
let user1_email = user1.email;
let user1_active = user1.active;

CREATING: SHORTCUT
Initializing �eld from a variable with that name

let email = String::from("someone@example.com");
let username = String::from("someusername123");
let active = true;
let sign_in_count = 1;

let user1 = User { email, username, active, sign_in_count };

UNNAMED STRUCTS
Structs without �eld names
Access �elds with .0, .1, .2, …

struct Point(u32, u32, u32);

let my_point = Point(1, 2, 3);

let fst_coord = my_point.0;
let snd_coord = my_point.1;
let thd_coord = my_point.2;

TUPLES
Get components via dot notation: .0, .1, etc.

Or: use pattern matching

let foo = (500, 6.4, 1); // plain tuple

let bar: (bool, f32, i32) = (true, 0.1, 5); // annotated

let (x, y, z) = foo; // pattern match
println!("The tuple is ({}, {}, {})", x, y , z);

let x = bar.0; let y = bar.1; let z = bar.2; // projections
println!("The tuple is ({}, {}, {})", x, y , z);

MUTATING
Can mutate individual �elds of a mutable struct

// make a mutable struct variable
let mut user1 = User {
 email: String::from("someone@example.com"),
 username: String::from("someusername123"),
 active: true,
 sign_in_count: 1,
};

// change value of email field
user1.email = String::from("anotheremail@example.com");

STRINGS
Special type for Strings: not just a list of characters!

Implementation is highly optimized
Memory allocation, resizing, etc. all automatic
See for many, many functions

Build strings with constructor
docs

let my_new_string = String::from("Hello!");

let my_bad_string = "Hello!"; // Not OK!

https://doc.rust-lang.org/std/string/struct.String.html

SLICES
Often: want a view into a contiguous piece of data
Can’t change it, but can read from it
In Rust: called a slice

let array = [1, 2, 3, 4, 5];

let slice = &array[1..3]; // type: &[i32]

let fst = slice[0]; // 2
let snd = slice[1]; // 3
let thd = slice[2]; // 4

STRING SLICES
Same idea, but for strings: special type &str

let s = String::from("hello world");

let hello = &s[0..5]; // type: &str
let world = &s[6..11]; // type: &str

SLICES DON’T OWN DATA
Someone else owns the data, not the slice
Can copy slices, pass slices around, etc.

let s = String::from("hello world");

let hello = &s[0..5];
let hello2 = hello;

println!("Hello? {} Hello! {}", hello, hello2); // This is OK

ENUMS IN RUST

THINK: SUM TYPES
Type taking several possible values (OR)

enum Color {
 Red,
 Green,
 Blue,
}

enum Time {
 HoursMinutes(i32, i32),
 Minutes(i32),
}

CONSTRUCTING ENUMS
Take name of enum type, add constructor after it

let my_color = Color::Red;

let my_time = Time::HoursMinutes(6,30);

let my_other_time = Time::Minutes(1080);

A FAMILIAR FRIEND: OPTION
Rust’s version of Maybe
Parameterized by a type T (just like Maybe a)

Don’t need pre�x Option::

enum Option<T> {
 Some(T),
 None,
}

let something = Some(5);
let nothing = None;

PATTERN MATCHING IN RUST
Just like case in Haskell…

let maybe_int = Some(42);

match maybe_int {
 None => println!("Nothing here!"),
 Some(n) => {
 println!("Just an int: {}", n);
 println!("Doing lots of stuff!");
 }
}

RUST FUNCTIONS

TOP-LEVEL FUNCTIONS
Typical way to declare functions
Type annotations needed for parameters and return

Can be inferred, but required for documentation
Unlike in Haskell: functions can perform effects

fn foo(x: i32, y: i32) -> i32 {
 ... x ... y ...
}

CALLING FUNCTIONS
Normal syntax: supply arguments and get result
No partial application: must supply all arguments

fn add_up(x: i32, y: i32) -> i32 { x + y }

fn main() {
 let added = add_up(10, 12);

 println!("The sum is: {}", added);
}

MOVING VERSUS
BORROWING

“MOVING” ARGUMENTS
Operationally: arguments passed “by value”
Ownership of argument passes into the function

Caller can’t use arguments after calling!
“Arguments moved into function”

Function can return argument to return ownership

EXAMPLE: MOVE
fn take_own(s: String) { ... }

fn main() {
 let my_string = String::from("Hello!");

 take_own(my_string); // Pass the string to function

 println!("Still there? {}", my_string); // Not OK: it's gone!
}

“BORROWING” ARGUMENTS
Operationally: arguments passed “by reference”
Ownership of argument doesn’t change

Original owner (caller, caller-of-caller, …) owns arg.
“Function borrows arguments” (from the owner)

Will give it back to owner when done with it

EXAMPLE: BORROW
fn take_borrow(s: &String) { ... }

fn main() {
 let my_string = String::from("Hello!");

 take_borrow(&my_string); // "Borrow" ref to fn

 println!("Still there? {}", my_string); // OK: still owner
}

OTHER WAY OF
DEFINING FNS:

METHODS

ADD FUNCTIONS TO A STRUCT/ENUM
Useful pattern: associate fns with structs/enums

Primary argument: the object (“self”)
Other arguments: stuff to access/modify self

“Methods” in object-oriented programming

SYNTAX: IMPL BLOCKS
struct Person {
 name: String,
 age: u32,
}

impl Person {
 fn print_me(&self) {
 println!("name: {} age: {}", self.name, self.age);
 }

 fn get_name(self) -> String { self.name }

 fn get_age(&self) -> u32 { self.age }
}

SELF PARAMETER
First parameter of method is always called “self”

Never write type T: comes from impl T
But: annotations (&, mut) are very important!

TRANSLATING METHODS
impl Person {
 fn get_name(self) -> String { self.name }
}

// Takes ownership of person! Same as:
fn get_name_fn(p: Person) { p.name }

TRANSLATING METHODS
impl Person {
 fn print_me(&self) {
 println!("name: {} age: {}", self.name, self.age);
 }
}

// Borrows person! Same as:
fn print_me_fn(p: &Person) {
 println!("name: {} age: {}", p.name, p.age);
}

CALLING METHODS
Use dot-notation, can chain calls together
Chaining is awkward for regular functions

let my_person = Person {
 name: String::from("Chicken Little"),
 age: 2,
};

my_person.print_me(); // same as: print_me(&my_person);

// Get name and append ", Jr." to it
let my_name_jr = my_person.get_name().push_str(", Jr.");

MODELING AN
IMPERATIVE LANGUAGE

CORE LANGUAGE: REVISITED
Model essential language features

Which programs are well-formed?
How should programs behave?

Imperative languages: memory, variables, state, …
Our plan: layer on top of (pure) expressions

Also called a “While-language”

EXTENSION 1: MEMORY
Different models capture different aspects

Scope of variables? Allocation? Types?
Simplest: memory (“store”) maps var. names to ints

Global, integer variables only

EXPRESSIONS IN STORES

Expressions can mention program variables
Meaning depends on the current memory
Not: variables in lambda calculus (fn args)

But: expressions don’t change memory

var = "x" | "y" | "z" | ... ;

bexpr = "true" | "false"
 | bexpr "&&" bexpr | aexpr "<" aexpr | ... ;

aexpr = var | num-cons
 | aexpr "+" aexpr | aexpr "*" aexpr | ... ;

EXTENSION 2: COMMANDS
Add commands as a new layer of the language

comm = "skip" (* do-nothing comm *)
 | var ":=" aexpr (* assign to var *)
 | comm ";" comm (* sequencing *)
 | "if" bexpr "then" comm "else" comm (* if-then-else *)
 | "while" bexpr "do" comm ; (* while loops *)

OPERATIONAL SEMANTICS
How do imperative programs step?

Depends on the current memory!
Idea: de�ne how command-store pairs step

Model how the program and memory change

BLACKBOARD (AND WR4)

