
LECTURE 14
Theory and Design of PL (CS 538)

March 09, 2020

THANKS FOR DOING
COURSE FEEDBACK!

COMMON COMPLAINTS
Written notes for stuff on blackboard
A lot more examples (of everything)
More interactive coding/demos
More readings for reviewing
Clearer instructions on HW/WR
Slow down!!!

IMPERATIVE
PROGRAMMING

SEQUENCE OF STEPS
Strongly in�uenced by real-world machine models

Think of program as a list of instructions to run
Use instructions to modify the machine state

Notable languages
FORTRAN, ALGOL, BASIC, Pascal, C (1950s-70s)
OO: Smalltalk, Simula, Java, C++ (1980s-90s)
Today: Python, Ruby, C#, Perl, Go, Rust, …

MUTABLE STATE
Idea of state is central to imperative programming

Registers, memory, �le system, …
Instructions describe how to mutate the state

Read, write, update, …

SEPARATE STATE FROM CODE
In pure FP, the code is both program and state

Evaluation depends on the program
Evaluation steps reduce the program to a value

In imperative programming, state is separate
Current state of machine is not visible in code
Code tells us how to update the (implicit) state

BENEFITS
Close �t to most real-world machine models today

Machines have registers, memory, state
Machine code is (basically) list of instructions
Well-suited to low-level and embedded systems

Often (but not always):
Natural translation to machine code
Fast performance

WEAKNESSES
Mutable state is hard to reason about

Can break modularity/abstraction
Calling a procedure can change the state in
complex or unexpected ways

Memory management is tricky
Concurrency and parallelism are a challenge

MANAGING MEMORY

TYPICAL MODEL
1. Code requests memory from system

Should be fresh piece of memory
2. Read/write/update data via pointer or reference

Read �les, maintain datastructures, etc.
3. Return memory when done

Releases memory, gives it back to system

TRADITIONAL CHALLENGES
If automatic memory management:

Slower and more unpredictable performance
Simply not acceptable for some applications

If manual memory management, possible bugs:
Memory leak: forget to free memory after done
Double free: free memory more than once
Use-after-free: use memory you’ve given back

CONCURRENCY

THE PRESENT IS PARALLEL
CPU speed no longer doubling every 18 months

Hitting limits: power and cooling
Moore’s law has stopped (for a while now)

Instead of faster cores, get more cores
2, 4, 8, 16, 32 separate CPUs
How to get 2x, 4x, 8x, 16x, 32x speedups?

THREADS OF EXECUTION
Run several parts of program in parallel

Better use of multiple cores, datacenters, etc.
Break up program into different threads

Can be good idea, even on single core
I/O thread waits for �le system, GUI responsive

TRADITIONAL CHALLENGES
No longer just a single list of instructions!

How to split up program?
How to coordinate accesses to shared memory?
Hard to think about all possible interleavings

Lots of common bugs
Data races: several threads access same memory in
non-deterministic order
Deadlock: no thread can run, waiting on each other

THE RUST LANGUAGE

HISTORY AND PRINCIPLES
Graydon Hoare’s side project at Mozilla (2006)
Heavily supported by Mozilla as a research language
Goal: a safe, concurrent, practical systems language

Ef�ciency: Very fast, programmer has control
Safety: eliminates memory and concurrency bugs
Modern PL features: in�uenced by FP, type systems

EXTREMELY FAST
Competitive with other systems language (C/C++/…)

But: substantially safer
Automatic memory management, but without GC

Safe and predictable performance
Designed for concurrency throughout

ELIMINATES MEMORY BUGS
Know at compile-time when memory should be freed

No memory leaks
Double frees, use-after-frees caught at compile time
Novel ownership/lifetime mechanism ensures safety

Based on two PL ideas: regions and af�ne types

“FEARLESS CONCURRENCY”
Data races are caught at compile time

Leveraging ownership/lifetime mechanism again
Eliminates whole class of common concurrency bugs

Data races are notoriously tricky to debug
Supports different kinds of concurrency

OTHER FP IDEAS ABOUND
Modern type system

Datatypes, polymorphism, traits, type inference
Emphasis on mutability and immutability

Encourages pure code
FP-style programming with higher-order functions

Anonymous functions, maps, �lters, folds, …

REAL-WORLD ADOPTION
Extremely active community

New version of the language every 6 weeks
Tons of libraries and package
Most popular language in StackOver�ow survey
Larger developments by Mozilla

Much of latest version of Firefox rewritten in Rust
Leverage safe concurrency, memory management

OUR PLAN

CORE RUST (4 WEEKS)
Will use The Rust Programming Language book
Fairly linear, we’ll mostly go in order this time
Many concepts will be familiar from Haskell

Strong types, including datatypes
Constructors and pattern matching
Traits and generics

CONCURRENCY (2-3 WEEKS)
Concurrency basics and concepts
Concurrency features in Rust
Core language for concurrency

ADVANCED TOPICS
Some selection of…

Error handling
Rust macros
Asynchronous programming
Unsafe Rust

HOMEWORKS
Three homeworks, same format

Rust Warmup: out today
HW4: Getting started writing Rust programs
HW5: Binary search tree, datastructures
HW6: Concurrency

Start early and ask for help!

WE WILL CARE ABOUT…
Memory

Where does it live: stack or heap?
When is it allocated/de-allocated?
Piece of data, or pointer to data?

Aliasing
How many variables refer to piece of data?
Which variables are allowed to change data?

Going (a little) fast

RUST TOOLS

READ THE DOCS
Rust docs are extremely high quality
Read the intro to get an idea of the module
If needed, look up speci�c functions

Just like in Haskell: pay attention to the types!

READ THE BOOK

Very high quality (free) textbook
Lots of examples!

We will follow this material closely

The Rust Programming Language (TRPL)

https://doc.rust-lang.org/book/

USE THE PLAYPEN
Located
Type, compile, run code online, see result
Use tools for formatting, linting
Share/link code snippets (with instructors)

here

https://play.rust-lang.org/

CARGO
Main package/build system for rust
Wraps around the rust compiler, rustc

No need to call rustc by hand

Useful commands
cargo check: Type/borrow checking (fast)

cargo build: Build an executable (slower)

cargo run: Run the thing

cargo clean: Clean up temporary �les

OTHER USEFUL TOOLS
clippy (cargo clippy)

Suggestions for cleaner code
Follow them unless there’s a good reason not to!

rustfmt (cargo fmt)

Automatic code formatter
Enforce consistent style on Rust source code

GROUND RULES
1. Don’t use unsafe code blocks.

2. Use the default (stable) version, not beta/nightly
3. Try to avoid panicking commands

These commands halt program if they fail
Examples: panic!, unwrap, expect, …

Unfortunately, sometimes unavoidable
4. Try not to write very slow code

Prefer loops over recursion
But: read HW instructions!

5. Compiler is very noisy, but �x your warnings

A TASTE OF RUST

DOING BASIC I/O
Printing: println!("value: {}", var)
Reading a line: io::stdin().read_line

fn main() {
 let mut guess = String::new(); // new mutable string variable
 let secret = 42; // secret number is always 42

 println!("Guess a number!");

 io::stdin().read_line(&mut guess); // read into guess

 println!("You guessed: {}", guess)
}

BASIC ERROR HANDLING
read_line returns something of type Result

Like Either in Haskell: Ok(val) or Err(e)
We can chain another function call to handle error

fn main() {
 let mut guess = String::new();
 let secret = 42;
 println!("Guess a number!");

 // Chain two function calls: read_line and expect
 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");
 // panic if read_line fails

 println!("You guessed: {}", guess);
}

MATCHING AND COMPARING
Rust has pattern matching and traits

Very similar to typeclasses
Cmp trait gives comparison function (in Haskell, Ord)

// pattern match
let guess: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => { println!("Not a number! Picking 0..."); 0 },
}

// compare: cmp method coming from Cmp trait
match guess.cmp(&secret) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("Just right!"),
}

A SMALL GUESSING GAME
loop {
 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");
 let guess_num: u32 = match guess.trim().parse() {
 Ok(num) => num,
 Err(_) => continue,
 }
 match guess_num.cmp(&secret) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => { println!("Just right!") ; break ; }
 }
}

VARIABLES AND
ASSIGNMENTS

BASIC DECLARATION

Let-bindings to declare variables; types inferred
Variables belong to a block

let x = 5;
println!("The value of x is {}", x);

BRACES MARK BLOCKS
Can open and close new blocks with braces
Inner blocks can use variables from surround blocks
Outer blocks can’t use variables from inner blocks

let outer = 5;
// Start new block
{
 let inner = 6;
 println!("The value of outer is {}", outer); // OK
}
// End new block
println!("The value of inner is {}", inner); // Not OK

A NORMAL EXAMPLE
let x = 42;

println!("The int x is: {}", x); // OK

let y = x;

println!("The int y is: {}", y); // OK

println!("The int x is: {}", x); // OK

A STRANGE EXAMPLE
let x = String::from("A string!");

println!("The string x is: {}", x); // OK

let y = x;

println!("The string y is: {}", y); // OK

println!("The string x is: {}", x); // Not OK???

OWNERSHIP
1. Each piece of data has an owner

Thing responsible for deallocating data
2. Each piece of data has exactly one owner

If data has no owner, it is deallocated (dropped)

OWNERSHIP IS UNIQUE
Fundamental concept in Rust
When assigning, ownership is moved
By default, types have “move semantics”

A STRANGE EXAMPLE
let x = String::from("A string!"); // Owner: x

println!("The string x is: {}", x);

let y = x; // Owner: y

println!("The string y is: {}", y); // OK: y is owner

println!("The string x is: {}", x); // x isn't the owner!

IMPLICIT MOVES
Generally: data is not copied—data is moved
For some types: copied, instead of moved

Usually: for primitive, simple types
Must be explicitly marked in type de�nition

These types are said to implement Copy
Or: types have “copy semantics”

A NORMAL (?) EXAMPLE
let x = 42;

println!("The int x is: {}", x); // Owner: x

let y = x; // Make copy of 42

println!("The int y is: {}", y); // Owner: y

println!("The int x is: {}", x); // Owner: x

DEFAULT: IMMUTABLE

Variables can only be set once
Setting again: compiler error

let x = 5; // OK
println!("The value of x is {}", x);

let y = x + 1; // OK
println!("The value of y is {}", y);

x = 6; // Not OK
println!("The value of x is {}", x);

WHY IMMUTABLE?
Immutable variables are easier to think about

Given let x = 5;, can replace x by 5 below

Require programmer to explicitly mark mutable vars
Only use if they really need it

Helpful information for compiler
Optimizations
Sharing

VARIABLE SHADOWING
Can redeclare same variable several times

Note: not recursive de�nitions (like Haskell)

let x = 5;
println!("The value of x is {}", x); // 5

let x = x + 1;
println!("The value of x is {}", x); // 6

let x = x + 2;
println!("The value of x is {}", x); // 8

DECLARING MUTABLE
Use keyword mut for let-bindings

let mut x = 5; // OK
println!("The value of x is {}", x);

x = 6; // OK
println!("The value of x is {}", x);

x = x + 1; // OK
println!("The value of x is {}", x);

STATEMENTS AND
EXPRESSIONS

TRADITIONALLY: SEPARATION
Expressions: don’t change the state

Compute by evaluation (rewriting)
Evaluate to some value
No side-effects
Example: Haskell programs

Statements: transform the state
Compute by execution
Produce some �nal state

RUST BLURS THE DIFFERENCE
“Expressions”: produce some �nal value
“Statements”: does not produce value

Effectively, something ending in a semicolon
Does not produce a value

Both may change the state!

CONTROL FLOW

“CONTROL”
Recall: program executes a sequence of statements
During execution, “control” is the current statement
Also sometimes called program counter

“FLOW”
Control moves steps from statement to statement
Statements can redirect where the control goes next
The central concept in imperative programming

SEQUENCING

THE SEMICOLON
Main use: gluing two statements together

Order matters! Different result:

let mut x = 1;
let mut y = 100;

x = y;
y = y + 1;

y = y + 1;
x = y;

OTHER USE: DISCARD RESULT

read_line returns a value of type Result
Trailing semicolon discards this value

let mut input = String::new();

io::stdin().read_line(&mut guess);
// ^--- Returns something!

println!("Guessed: {}" guess);

BRANCHING

IF-THEN-ELSE
Hopefully familiar…

let number = ...;

if number < 5 {
 println!("so small!");
} else if number > 10 {
 println!("so large!");
} else {
 println!("so OK!");
}

CAN PRODUCE VALUE
Branches must produce same type of value

let number = ...;

let branched = if number < 5 {
 "big!"
} else if number > 10 {
 "small!"
} else {
 "OK!"
}

PATTERN MATCHING
Match on an enumeration (sum type)

Again, branches can produce values (of same type)

let x = 42;
let y = 55;

let cmp_result = x.cmp(&y);

match cmp_result {
 Ordering::Less => println!("so small!"),
 Ordering::Equal => println!("exactly equal!"),
 Ordering::Greater => println!("way big!"),
}

IF-LET MATCHING
Sometimes: want to check for speci�c constructor

let maybe_string = Some(String::from("Hello World!"));

...

if let Some(str) = maybe_string {
 ... str ...
} else {
 ... // Can't use str here!
}

REPEATING

LOOP
Repeats a command (forever)
Use break to exit loop, continue to jump to start

let mut x = 20;

loop {
 x = x + 1;
 if x < 42 {
 println!("not yet...");
 continue;
 } else if x = 42 {
 println!("done!");
 break;
 } else {
 println!("uh-oh");
 }
}

WHILE
Repeats a command while some condition is true

let mut x = 20;

while x != 42 {
 x = x + 1;
 println!("not yet...");
}
println!("done!");

WHILE-LET MATCHING
Almost the same as if-let, but in a loop

let mut maybe_string = Some(String::from("Hello World!"));

...

while let Some(str) = maybe_string {
 ... str ...
}

FOR-LOOPS
Rust for-loops iterate over range, like this:

let my_array = [10, 20, 30, 40, 50];

// For-loops in Rust automatically use iterator
for element in my_array {
 println!("the value is: {}", element);
}

