LECTURE 14

Theory and Design of PL (CS 538)
March 09, 2020

THANKS FOR DOING
COURSE FEEDBACK!

COMMON COMPLAINTS

e Written notes for stuff on blackboard
e Alot more examples (of everything)

e More interactive coding/demos

e More readings for reviewing

e Clearer instructions on HW/WR
e Slow down!!!

IMPERATIVE
PROGRAMMING

SEQUENCE OF STEPS

e Strongly influenced by real-world machine models
= Think of program as a list of instructions to run
= Use instructions to modify the machine state

e Notable languages
= FORTRAN, ALGOL, BASIC, Pascal, C (1950s-70s)

= O0: Smalltalk, Simula, Java, C++ (1980s-90s)
= Today: Python, Ruby, C#, Perl, Go, Rust, ...

MUTABLE STATE

e |dea of state is central to imperative programming
m Registers, memory, file system, ...

e Instructions describe how to mutate the state
= Read, write, update, ...

SEPARATE STATE FROM CODE

e [n pure FP, the code is both program and state

= Evaluation depends on the program

m Fvaluation steps reduce the program to a value
e |[n imperative programming, state is separate

= Current state of machine is not visible in code

s Code tells us how to update the (implicit) state

BENEFITS

e Close fit to most real-world machine models today
= Machines have registers, memory, state
= Machine code is (basically) list of instructions
= \Well-suited to low-level and embedded systems
o Often (but not always):
= Natural translation to machine code
m Fast performance

WEAKNESSES

e Mutable state is hard to reason about
= Can break modularity/abstraction
m Calling a procedure can change the state in
complex or unexpected ways
e Memory management is tricky
e Concurrency and parallelism are a challenge

MANAGING MEMORY

TYPICAL MODEL

1. Code requests memory from system
e Should be fresh piece of memory

2. Read/write/update data via pointer or reference
e Read files, maintain datastructures, etc.

3. Return memory when done
e Releases memory, gives it back to system

TRADITIONAL CHALLENGES

e |[f automatic memory management:
= Slower and more unpredictable performance
= Simply not acceptable for some applications

e [f manual memory management, possible bugs:
= Memory leak: forget to free memory after done
= Double free: free memory more than once
m Use-after-free: use memory you've given back

CONGURRENCY

THE PRESENT IS PARALLEL

e CPU speed no longer doubling every 18 months
= Hitting limits: power and cooling
s Moore’s law has stopped (for a while now)

e |[nstead of faster cores, get more cores

m 2.4, 8,16, 32 separate CPUs
» How to get 2x, 4x, 8x, 16X, 32x speedups?

THREADS OF EXECUTION

e Run several parts of program in parallel
= Better use of multiple cores, datacenters, etc.
e Break up program into different threads
= Can be good idea, even on single core
= |/O thread waits for file system, GUI responsive

TRADITIONAL CHALLENGES

e No longer just a single list of instructions!
= How to split up program?
= How to coordinate accesses to shared memory?
= Hard to think about all possible interleavings
e Lots of common bugs
m Data races: several threads access same memory In
non-deterministic order
= Deadlock: no thread can run, waiting on each other

THE RUST LANGUAGE

HISTORY AND PRINCIPLES

e Graydon Hoare’s side project at Mozilla (2006)

e Heavily supported by Mozilla as a research language

e Goal: asafe, concurrent, practical systems language
m Ffficiency: Very fast, programmer has control
= Safety: eliminates memory and concurrency bugs
= Modern PL features: influenced by FP, type systems

EXTREMELY FAST

e Competitive with other systems language (C/C++/...)
= But: substantially safer

e Automatic memory management, but without GC
m Safe and predictable performance

e Designed for concurrency throughout

ELIMINATES MEMORY BUGS

e Know at compile-time when memory should be freed
= No memory leaks

e Double frees, use-after-frees caught at compile time

e Novel ownership/lifetime mechanism ensures safety
= Based on two PL ideas: regions and affine types

“FEARLESS CONCURRENCY"

e Data races are caught at compile time
m | everaging ownership/lifetime mechanism again

e Eliminates whole class of common concurrency bugs
= Data races are notoriously tricky to debug

e Supports different kinds of concurrency

OTHER FP IDEAS ABOUND

e Modern type system
= Datatypes, polymorphism, traits, type inference
e Emphasis on mutability and immutability
= Encourages pure code
e FP-style programming with higher-order functions
= Anonymous functions, maps, filters, folds, ...

REAL-WORLD ADOPTION

e Extremely active community
= New version of the language every 6 weeks

e Tons of libraries and package

e Most popular language in StackOverflow survey

e Larger developments by Mozilla
= Much of latest version of Firefox rewritten in Rust
m | everage safe concurrency, memory management

OUR PLAN

CORE RUST (4 WEEKS)

e Will use The Rust Programming Language book
e Fairly linear, we'll mostly go in order this time
e Many concepts will be familiar from Haskell

= Strong types, including datatypes

= Constructors and pattern matching

= Traits and generics

CONCURRENCY (2-3 WEEKS)

e Concurrency basics and concepts
e Concurrency features in Rust
e Core language for concurrency

ADVANCED TOPICS

e Some selection of...
= Error handling
= Rust macros
= Asynchronous programming
m Unsafe Rust

HOMEWORKS

e Three homeworks, same format
= Rust Warmup: out today
s HW4: Getting started writing Rust programs
= HW5: Binary search tree, datastructures
s HW6é6: Concurrency

Start early and ask for help!

WE WILL CARE ABOUT...

e Memory

= \WWhere does it live: stack or heap?

= When is it allocated/de-allocated?

= Piece of data, or pointer to data?
e Aliasing

= How many variables refer to piece of data?

= Which variables are allowed to change data?
e Going (alittle) fast

RUST TOOLS

READ THE DOCS

e Rust docs are extremely high quality
e Read theintroto get an idea of the module
e |f needed, look up specific functions
= Just like in Haskell: pay attention to the types!

READ THE BOOK

e The Rust Programming Language (TRPL)
e Very high quality (free) textbook

= | ots of examples!
e We will follow this material closely

https://doc.rust-lang.org/book/

USE THE PLAYPEN

e Located here

e Type, compile, run code online, see result

e Use tools for formatting, linting

e Share/link code snippets (with instructors)

https://play.rust-lang.org/

CARGO

e Main package/build system for rust
e \Wraps around the rust compiler, rustc

= No need to call rustc by hand

e Useful commands
" cargo check: Type/borrow checking (fast)

" cargo build:Build an executable (slower)
" cargo run: Runthething
" cargo clean:Cleanuptemporary files

OTHER USEFUL TOOLS

e clippy (cargo clippy)

= Suggestions for cleaner code

= Follow them unless there’s a good reason not to!
e rustfmt (cargo fmt)

= Automatic code formatter

= Enforce consistent style on Rust source code

GROUND RULES

1. Don't use unsafe code blocks.

2. Use the default (stable) version, not beta/nightly
3. Try to avoid panicking commands

e These commands halt program if they falil

e Examples: panic!,unwrap, expect,...

e Unfortunately, sometimes unavoidable
4. Try not to write very slow code
e Prefer loops over recursion
e But: read HW instructions!
5. Compiler is very noisy, but fix your warnings

A TASTE OF RUST

DOING BASIC 1/0

e Printing: println! ("value: {}", wvar)
e Readingaline:io::stdin() .read line

fn main() {
let mut guess = String::new(); // new mutable string variable
let secret = 42; // secret number 1s always 42
println! ("Guess a number!");
io::stdin() .read line (&mut guess); // read into guess

println! ("You guessed: {}", guess)

BASIC ERROR HANDLING

e read linereturnssomethingoftype Result
m | ke Eitherin Haskell: Ok (val) orErr (e)
e \We can chain another function call to handle error

fn main() {
let mut guess String: :new() ;
let secret 42;
println! ("Guess a number!");

// Chain two function calls: read line and expect
10::stdin() .read line (&mut guess)

.expect ("Failed to read line");

// panic 1f read line fails

println! ("You guessed: {}", guess):;

J

MATCRING AND COMPARING

e Rust has pattern matching and traits

= Very similar to typeclasses
e Cmp trait gives comparison function (in Haskell, 0rd)

// pattern match

let guess: u32 = match guess.trim() .parse () {
Ok (num) => num,
Err() => { println! ("Not a number! Picking 0..."); 0 1},

)

// compare: cmp method coming from Cmp trait
match guess.cmp (&secret) {

Ordering: :Less => println! ("Too smalll!"),
Ordering: :Greater => println! ("Too big!"),
Ordering: :Equal => println! ("Just right!"),

)

A SMALL GUESSING GAME

loop {
10::stdin() .read line (&mut guess)
.expect ("Failed to read line");
let guess num: u32Z2 = match guess.trim() .parse () {
Ok (num) => num,
Err() => continue,

J

match guess num.cmp (&secret) {
Ordering: :Less => println! ("Too small!"),
Ordering: :Greater => println! ("Too big!"),
Ordering: :Equal => { println! ("Just right!") ; break ; }

VARIABLES AND
ASSIGNMENTS

BASIC DECLARATION

let x = 5;
println! ("The value of x 1s {}", Xx);

e | et-bindings to declare variables; types inferred
e Variables belong to a block

BRAGES MARK BLOCKS

e Can open and close new blocks with braces
e Inner blocks can use variables from surround blocks
e QOuter blocks can’t use variables from inner blocks

let outer = 5;
// Start new block
{
let i1nner = 6;
println! ("The value of outer is {}", outer):; // OK
}
// End new block
println! ("The value of inner is {}", inner); // Not OK

A NORMAL EXAMPLE

let x = 42;
println! ("The int x is: {}", x); // OK
let v = x;
println! ("The int v is: {}", v); // OK

println! ("The int x is: {}", x); // OK

A STRANGE EXAMPLE

let x = String::from("A string!");
println! ("The string x is: {}", x); // OK
let v = x;

println! ("The string v is: {}", v); // OK

println! ("The string x is: {}", x); // Not OK???

OWNERSHIP

1. Each piece of data has an owner
e Thing responsible for deallocating data
2. Each piece of data has exactly one owner
o |f data has no owner, it is deallocated (dropped)

OWNERSHIP IS UNIQUE

e Fundamental concept in Rust
e When assigning, ownership i1s moved
e By default, types have “move semantics”

A STRANGE EXAMPLE

let x = String::from("A string!"™); // Owner: x
println! ("The string x 1is: {}", X);
let v = x; // Owner: vy

println! ("The string y is: {}", vy); // OK: y 1s owner

println! ("The string x is: {}", x); // x isn't the owner!

IMPLICIT MOVES

e Generally: datais not copied—data is moved
e For some types: copied, instead of moved

= Usually: for primitive, simple types

= Must be explicitly marked in type definition
e These types are said to implement Copy

= Or: types have “copy semantics”

A NORMAL (?) EXAMPLE

let x = 42;

println! ("The int x is: {}", x); // Owner: x

let v = x; // Make copy of 42
println! ("The int y is: {}", v); // Owner: y

println! ("The int x is: {}", x); // Owner: x

DEFAULT: IMMUTABLE

let x = 5; // OK
println! ("The value of x 1s {}", Xx);
let v = x + 1; // OK

println! ("The value of y is {}", v);

X = 6; // Not OK
println! ("The value of x 1s {}", Xx);

e Variables can only be set once
e Setting again: compiler error

WHY IMMUTABLE?

e |[mmutable variables are easier to think about
" Given let x = 5;,canreplace x by 5 below

e Require programmer to explicitly mark mutable vars
= Only use If they really need it

e Helpful information for compiler
= Optimizations
= Sharing

VARIABLE SHADOWING

e Canredeclare same variable several times

let x = 5;
println! ("The value of x is {}", x); // 5

let x = x + 1;
println! ("The value of x is {}", x); // 6

let x = x + 2;
println! ("The value of x is {}", x); // 8

e Note: not recursive definitions (like Haskell)

DECLARING MUTABLE

e Use keyword mut for let-bindings

let mut x = 5; // OK
println! ("The value of x 1s {}", Xx);
X = 6; // OK
println! ("The value of x 1s {}", Xx);
X = x + 1; // OK

println! ("The value of x 1s {}", Xx);

STATEMENTS AND
EXPRESSIONS

TRADITIONALLY: SEPARATION

e Expressions: don’'t change the state
= Compute by evaluation (rewriting)
= Evaluate to some value
= No side-effects
s Example: Haskell programs

e Statements: transform the state
= Compute by execution
= Produce some final state

RUST BLURS THE DIFFERENGE

e “Expressions”: produce some final value

e “Statements”: does not produce value
= Effectively, something ending in a semicolon
= Does not produce a value

Both may change the state!

CONTROL FLOW

“CONTROL"

e Recall: program executes a sequence of statements
e During execution, “control” is the current statement
e Also sometimes called program counter

“FLUW"

e Control moves steps from statement to statement
e Statements can redirect where the control goes next
e The central concept in imperative programming

SEQUENCING

THE SEMICOLON

e Main use: gluing two statements together

let mut x = 1;
let mut v = 100;

Xzy,’
y =y + 1;

e Order matters! Different result:

OTHER USE: DISCARD RESULT

let mut 1nput = String::new();

10::stdin () .read line (&mut guess);
// A"——— Returns something!

println! ("Guessed: {}" guess);

e read linereturnsavalueoftypeResult
e Trailing semicolon discards this value

BRANCHING

IF-THEN-ELSE

e Hopefully familiar...

let number = ...;

1f number < 5 {

println! ("so small!");
} else 1f number > 10 {

println! ("so large!");
} else {

println! ("so OK!");

CAN PRODUCE VALUE

e Branches must produce same type of value

let number = ...;

let branched = 1f number < 5 {
"big!"

} else 1f number > 10 {
"smalll!"

} else {
"OK!™"

)

PATTERN MATCHING

e Match on an enumeration (sum type)

let x
let vy

47
55;

let cmp result = x.cmp (&y);

match cmp result

Ordering: :Less => println! ("so smalll!"),
Ordering: :Equal => println! ("exactly equal!"),
Ordering: :Greater => println! ("way big!"),

)

e Again, branches can produce values (of same type)

IF-LET MATCHING

e Sometimes: want to check for specific constructor

let maybe string Some (String::from("Hello World!"));

1f let Some(str)
. Str ...
} else
// Can't use str here!

maybe string

)

REPEATING

LOOP

e Repeats acommand (forever)
e Usebreak toexitloop, continue tojump to start

let mut x = 20;

loop {
X =x + 1;
if x < 42 |
println! ("not yet...");

continue;

} else 1f x = 42 {
println! ("done!") ;
break;

} else {

println! ("uh-oh") ;

WHILE

e Repeats acommand while some condition is true

let mut x = 20;

while x != 42 |
X = x + 1;
println! ("not yet...");

J

println! ("done!") ;

WHILE-LET MATCHING

e Almost the same as if-let, but in a loop

let mut maybe string = Some (String::from("Hello World!"));

while let Some(str) = maybe string {
. Str ...

J

FOR-LOOPS

e Rust for-loops iterate over range, like this:

let my array = [10, 20, 30, 40, 50];

// For-loops 1in Rust automatically use iterator
for element i1n my array {
println! ("the value 1s: {}", element);

)

