
LECTURE 13
Theory and Design of PL (CS 538)

March 4, 2020

PROPERTY-BASED
TESTING

UNIT TESTING IS BORING
Most common kind of test today
Idea: write test cases one by one

Write down one input (and maybe external state)
Write down expected output
Check if input produces expected output

Build up a lot of hand-crafted tests
Write new tests when bugs are found
Keep tests up to date

IDEA: TEST PROPERTIES
Idea: write down properties of programs
Properties hold for class of inputs, not just one input
Don’t need to write tests one-by-one

Randomly generate test cases!

EXAMPLES
Applying twice same as applying once (idempotence)
One function “undoes” another function (inverse)
Optimized implementation mirrors simple version
Relationships between insert, delete, lookup, etc.

QUICKCHECK
Haskell library for property-based testing

Write random input generators with combinators
Write properties of functions we want to test

Quickcheck will randomly generate and test
“Shrinks” failing test inputs to �nd minimal ones

Implementations in at least 40+ other languages

TAKING IT FOR A SPIN
Install with Cabal (or Stack)

Import Haskell module

Documentation available

cabal v2-install --lib QuickCheck

import Test.QuickCheck

here

https://hackage.haskell.org/package/QuickCheck-2.12.6.1/docs/Test-QuickCheck.htm

QUICKCHECK DEMO

HOW TO TEST A PARSER?
Parser goes from String to structured data
How to generate input Strings?

Randomly? Almost certainly won’t parse…
Even if parser succeeds, is the answer is right?

USE THE PRETTY-PRINTER (HW3)
Parser: String to structured data
Printing: structured data to String

This direction is usually easy…

Inverse property: printing data, then
parsing it back should give original data!

HOW IS THE LIBRARY
DESIGNED?

GEN TYPE
Gen a: something that can generate random a’s

-- Build generator drawing a's from a list of a's
elements :: [a] -> Gen a

-- Select a random generator from a list
oneof :: [Gen a] -> Gen a

-- Customize distribution of generators
frequency :: [(Int, Gen a)] -> Gen a

GEN IS A MONAD

Return: from val of type a, build generator that

always returns val
Bind: draw something from �rst generator (of a’s)

and use to select the next generator (of b’s)

instance Monad Gen where
 return :: a -> Gen a

 (>>=) :: Gen a -> (a -> Gen b) -> Gen b

COMBINING GENERATORS
Combinators: build new generators out of old ones

-- Turn generator of a into generator of pairs of a
genPairOf :: Gen a -> Gen (a, a)
genPairOf g = do x <- g
 y <- g
 return (x, y)

-- Turn generator of a into generator of lists of a
vectorOf :: Int -> Gen a -> Gen [a]
vectorOf 0 _ = return []
vectorOf n g = do x <- g
 xs <- vectorOf (n - 1) g
 return (x:xs)

TYPECLASS: ARBITRARY
Arbitrary a: means a is “generatable”

Concretely: there is something of type Gen a

class Arbitrary a where
 arbitrary :: Gen a

USING ARBITRARY
Typeclass machinery will automatically get generator
Compare with previous: no need to pass in Gen a

genPair :: Arbitrary a => Gen (a, a)
genPair = do x <- arbitrary -- From typeclass constraint
 y <- arbitrary -- Automatically inferred
 return (x, y)

vector :: Arbitrary a => Int -> Gen [a]
vector 0 = return []
vector n = do x <- arbitrary
 xs <- vector (n - 1)
 return (x:xs)

INSTANCES OF ARBITRARY
Library has tons of instances for base types

Arbitrary Bool, Arbitrary Char, Arbitrary Int, …
Also has instances for more complex types

instance (Arbitrary a, Arbitrary b)
 => Arbitrary (a, b) where -- products
instance (Arbitrary a, Arbitrary b)
 => Arbitrary (Either a b) where -- sums
instance Arbitrary a
 => Arbitrary [a] where -- lists

ARBITRARY PRODUCTS
instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
 arbitrary = do getA <- arbitrary -- type: Gen a
 getB <- arbitrary -- type: Gen b
 return (getA, getB)

ARBITRARY SUMS
instance (Arbitrary a, Arbitrary b) => Arbitrary (Either a b) whe
 arbitrary = oneOf [do aa <- arbitrary -- type: Gen a
 return (Left aa)
 , do bb <- arbitrary -- type: Gen b
 return (Right bb)]

TESTING PROPERTIES
Combine generator of a’s and property of a’s

forAll :: Show a => Gen a -> (a -> Bool) -> Property

myProp2 = forAll genX $ \x ->
 forAll genY $ \y ->
 fst (x, y) == x

ADDITIONAL FEATURES
Sizes: control “size” of generated things
Shrinking: given a failing test case, “make it smaller”

Search for simplest failing test cases
Can customize how to shrink test cases

Implications: if one prop holds, then other one holds
“If input is valid, then function behaves correctly”

QUICK REVIEW: OUR
FAVORITE TYPES

ALWAYS THE SAME PATTERN
1. Add a new type
2. Add constructor expressions
3. Add destructor expressions
4. Add typing rules for new expressions
5. Add evaluation rules for new expressions

FUNCTION TYPES
1. Type of the form , where are types

2. Constructing functions:

3. Destructing functions:

s → t s, t
λx. e

e e′

FUNCTIONS IN HASKELL
-- Function types look like this
myFun :: Int -> String

-- Building functions
myFun = \arg -> "Int: " ++ (show arg)

mySameFun arg = "Int: " ++ (show arg)

-- Using functions
myOtherFun = myFun 42

PRODUCT TYPES
1. Type of the form , where are types

2. Constructing pairs:

3. Destructing pairs: and
Or: pattern match

s × t s, t
(e , e)1 2

f st(e) snd(e)

Think: an contains an AND a s × t s t

PRODUCTS IN HASKELL
-- Product types look like this:
myPair :: (Bool, Int)

-- Building pairs
myPair = (True, 1234)

-- Using pairs via projections
myFst = fst myPair -- True
mySnd = snd myPair -- 1234

RECORDS IN HASKELL
“Record types”: products in disguise

-- Declaring a record type
data RecordType = MkRt { getBool :: Bool, getInt :: Int }
myRecord :: RecordType

-- Building records
myRecord = MkRt { getBool = True, getInt = 1234 }

-- Using records via accessors
myBool = getBool myRecord -- True
myInt = getInt myRecord -- 1234

-- Using records pattern match
myFoo = case myRecord of
 MkRt { getBool = b, getInt = i } -> ... b ... i ...

SUM TYPES
1. Type of the form , where are types

2. Constructing sums: ,
3. Destructing sums: case analysis/pattern match

Can’t use fst/snd: don’t know if it’s an or a !

s + t s, t
inl(e)1 inr(e)2

s t

Think: an contains an OR a s + t s t

SUMS IN HASKELL
-- Sum types look like this:
data BoolPlusInt = Inl Bool | Inr Int

-- Building sums: two ways
myBool = Inl True :: BoolPlusInt
myInt = Inr 1234 :: BoolPlusInt

-- Using sums: pattern match
myFun :: BoolPlusInt -> String
myFun bOrI = case bOrI of
 Inl b -> "Got bool: " ++ (show b)
 Inr i -> "Got int: " ++ (show i)

THE ALGEBRA OF
DATATYPES

WHAT IS AN ALGEBRA?
A bunch of stuff you can multiply and add together
Think: high-school algebra, polynomials, etc.
How can we multiply and add types?

More care needed for non-termination
(Course theme: we won’t be careful)

WHEN ARE TWO TYPES “THE SAME”?
Given two equivalent types and :

Program (function) converting to

Program (function) converting to
Converting back and forth should be identity

We call such types isomorphic, and write

t s
t s
s t

t ≅ s

FINITE TYPES
A type with no values: 0 (“Void”/“Empty”/“False”)

No constructors
A type with one possible value: 1 (“Unit”)

Exactly one constructor:
A type with two possible values: 2 (“Bool”)

Exactly two constructors: and
A type with three possible values: 3 (“Three”)
…

()

true false

EXPECTED EQUATIONS HOLD!
Basic arithmetic

Commutativity

Associativity

2 × 2 ≅ 1 + 1 + 1 + 1 ≅ 4

t × s ≅ s × t t + s ≅ s + t

t +1 (t +2 t) ≅3 (t +1 t) +2 t3

EXPONENTIALS
Write for function types
Satis�es the expected properties, for instance:

Arithmetic: ,

Tower rule:

st t → s

2 ≅2 4 t ≅2 t × t
(Z) ≅Y X ZX×Y

Z ≅X+Y Z ×X ZY

DERIVATIVES
High-school calculus: derivative of is

Surprisingly: forms the zipper of a type!
Original type with a “hole” in it

Example: derivative of pair is

Left: hole in �rst component, in second

Right: hole in second component, in �rst

Xn n × Xn−1

t × t 2 × t ≅ t + t
t

t

INDUCTIVE TYPES

Reading: should satisfy

One solution:

Reading: either empty, or one , or two , …

Take derivative:
You’ve programmed with this type before…

data List a = Nil | Cons a (List a)

List(t) ≅ 1 + t × List(t)
1 + t + t +2 t +3 ⋯

t t
1 + 2 × t + 3 × t +2 ⋯

HASKELL WRAPUP

HIGHLY EXPERIMENTAL
Original goal: implement a lazy language
An academic experiment that escaped from the lab

“Avoid success at all costs”
Remains a testbed for wild and wacky PL ideas
GHC has a huge list of

IncoherentInstances, UndecidableInstances,
RankNTypes, GADTs, …

experimental �ags

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html

HASKELL IS EXTREME
Extreme control of side-effects: can’t just print a line!
Pervasive use of monads: hard to avoid
Style encourages lots of symbol operators

Impossible to Google, looks like line noise
Takes abstraction to an extreme

Highly generic and reusable code
Very dense: looks small, but unpacks to a lot

TREMENDOUS INFLUENCE
Popularized many features

Typeclasses and polymorphism
Algebraic datatypes and pattern matching
Higher-order functions

Showed: strongly-typed languages can be elegant
Every language should have type inference

Changed how people think about programming
Got lots of people to learn about monads

DOES ANYONE USE THIS?
 you might think

Finance: Credit Suisse, DB, JPM, Standard
Chartered, Barclays, HFT shops, …
Big tech: Microsoft, Facebook, Google, Intel, …
R&D: Galois, NICTA, MITRE, …
Security: Kaspersky, lots of blockchain, …
Startups: too many

Strengths
Anything working with source code
Static analysis, transformations, compilers, …
Hardware design

More than

https://github.com/erkmos/haskell-companies
https://wiki.haskell.org/Haskell_in_industry

CAN THIS STUFF GO FAST?
Haskell code can be really fast

Can be ,
GHC is highly optimizing, use purity and types

Performance tuning makes a huge difference
Requires very solid understanding of GHC

, somewhat of a dark art
You have to know what you’re doing

competitive with C sometimes

Few resources

https://donsbot.wordpress.com/2008/06/04/haskell-as-fast-as-c-working-at-a-high-altitude-for-low-level-performance/
https://chrisdone.com/posts/fast-haskell-c-parsing-xml
https://markkarpov.com/post/migrating-text-metrics.html
https://two-wrongs.com/on-competing-with-c-using-haskell
http://www.scs.stanford.edu/16wi-cs240h/

LAZY VERSUS EAGER
Laziness is double-edged
Elegant, simple code via recursion

Very natural to work with in�nite data
Usually don’t hit non-termination

Hard to reason about performance, especially space
Things might not be run when you think they are
“Space leaks”: buildup of suspended computations

LESS RADICAL COUSINS
Haskell is a member of the ML family of languages
Same family: OCaml, SML, F#, Purescript, …

More popular in industry
 with curly braces and semicolons

General features
Eager, easier to reason about performance
No control of side effects (no monads)
No typeclasses (but real modules)
Syntax is very similar to Haskell

FB version

https://reasonml.github.io/

SCRATCHING THE SURFACE
Much more to Haskell than we covered

Type level programming, dependent types
Concurrency and parallelism
Generic Haskell (how does derive work?)

Arbitrarily complex category theory stuff
Related systems

: types with custom assertions
: computer-aided proof assistant

Liquid Haskell
Agda

https://ucsd-progsys.github.io/liquidhaskell-blog/
https://wiki.portal.chalmers.se/agda/pmwiki.php

