LECTURE 13

Theory and Design of PL (CS 538)
March 4, 2020

PROPERTY-BASED
TESTING

UNIT TESTING 1S BORING

e Most common kind of test today
e |dea: write test cases one by one
= \Write down one input (and maybe external state)
= \Write down expected output
= Check if input produces expected output
e Build up alot of hand-crafted tests
= \Write new tests when bugs are found
= Keep tests up to date

IDEA: TEST PROPERTIES

e |dea: write down properties of programs
e Properties hold for class of inputs, not just one input
e Don't need to write tests one-by-one

Randomly generate test cases!

EXAMPLES

e Applying twice same as applying once (idempotence)
e One function “undoes” another function (inverse)

e Optimized implementation mirrors simple version

e Relationships between insert, delete, lookup, etc.

(UICKCHECK

e Haskell library for property-based testing
= Write random input generators with combinators
= \Write properties of functions we want to test

e Quickcheck will randomly generate and test
m “Shrinks” failing test inputs to find minimal ones

e I[mplementations in at least 40+ other languages

TARING IT FOR A SPIN

e |nstall with Cabal (or Stack)

cabal vZ2-1install —--1ib QuickCheck

e Import Haskell module

import Test.QuickCheck

e Documentation available here

https://hackage.haskell.org/package/QuickCheck-2.12.6.1/docs/Test-QuickCheck.htm

(UICKCHECK DEMO

HOW T0 TEST A PARSER?

e Parser goes from String to structured data
e How to generate input Strings?
= Randomly? Almost certainly won't parse...
e Even If parser succeeds, is the answer is right?

USE THE PRETTY-PRINTER (HW3)

e Parser: String to structured data
e Printing: structured data to String
= Thisdirection is usually easy...

Inverse property: printing data, then
parsing it back should give original data!

HOW IS THE LIBRARY
DESIGNED?

GEN TYPE

e Gen a:somethingthat can generate random a’s

—— Build generator drawing a's from a 1ist of a's
elements :: [a] -> Gen a

—-— Select a random generator from a 1ist
oneof :: [Gen a] -> Gen a

—— Customize distribution of generators
frequency :: [(Int, Gen a)] -> Gen a

GEN IS A MONAD

instance Monad Gen where
return :: a —-> Gen a

(>>=) :: Gen a -> (a -> Gen b) -> Gen Db

e Return: from val of type a, build generator that

always returns val
e Bind: draw something from first generator (of a’s)

and use to select the next generator (of b’s)

COMBINING GENERATORS

e Combinators: build new generators out of old ones

-— Turn generator of a i1nto generator of pairs of a

genPairOf :: Gen a —-> Gen (a, a)
genPairOf g = do x <- g
Y <= g

return (x, V)

—-— Turn generator of a into generator of 1ists of a

vectorOf :: Int -> Gen a -> Gen [a]
vectorOf 0 = return []
vectorOf n g = do x <- g

Xxs <- vectorOf (n - 1) g

return (xX:xs)

TYPEGLASS: ARBITRARY

e Arbitrary a:meansais generatable”
e Concretely: there is something of type Gen a

class Arbitrary a where
arbitrary :: Gen a

USING ARBITRARY

e Typeclass machinery will automatically get generator
e Compare with previous: no need to pass in Gen a

genPalir :: Arbitrary a => Gen (a, a)
genPair = do x <- arbltrary -- From typeclass constraint
y <— arbitrary -- Automatically inferred

return (X, V)

vector :: Arbitrary a => Int -> Gen [a]
vector 0 = return []
vector n = do x <- arbitrary

xs <- wvector (n - 1)

return (xX:xs)

INSTANCES OF ARBITRARY

e Library has tons of instances for base types
= Arbitrary Bool, Arbitrary Char, Arbitrary Int, ...
e Also has instances for more complex types

instance (Arbitrary a, Arbitrary Db)

=> Arbitrary (a, b) where —— products
instance (Arbitrary a, Arbitrary b)
=> Arbitrary (Either a b) where -- sums

instance Arbitrary a
=> Arbltrary [a] where —— J1ists

ARBITRARY PRODUCTS

instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
arbitrary = do getA <- arbitrary -- type: Gen a
getB <- arbitrary -- type: Gen b

return (getA, getB)

ARBITRARY SUMS

instance (Arbitrary a, Arbitrary b) => Arbitrary (Either a b) whe

arbitrary = oneOf [do aa <- arbitrary -- type: Gen a
return (Left aa)
, do bb <- arbitrary -- type: Gen b

return (Right bb)]

TESTING PROPERTIES

e Combine generator of a’s and property of a’s

forAll :: Show a => Gen a -> (a —-> Bool) —-> Property

myProp2 = forAll genX $ \x ->
forAll genY $ \y ->
fst (x, y) == X

ADDITIONAL FEATURES

e Sizes: control “size” of generated things

e Shrinking: given a failing test case, “make it smaller”
m Search for simplest failing test cases
= Can customize how to shrink test cases

e Implications: if one prop holds, then other one holds
= “|f input is valid, then function behaves correctly”

(UICK REVIEW: OUR
FAVORITE TYPES

ALWAYS THE SAME PATTERN

1. Add a new type

2. Add constructor expressions

3. Add destructor expressions

4. Add typing rules for new expressions

5. Add evaluation rules for new expressions

FUNCTION TYPES

1. Type of theforms — t,where s, t are types
2. Constructing functions: AX. €
3. Destructing functions: e €’

FUNCTIONS IN HASKELL

—— Function types look 1like this

myFun :: Int -> String

—— Building functions
myFun = \arg -> "Int: " ++ (show argqg)

mySamelun arg = "Int: " ++ (show arqg)

—-— Using functions
myOtherFun = myFun 42

PRODUCT TYPES

1. Type of theforms X t,where s, t are types
2. Constructing pairs: (e1, €2)

3. Destructing pairs: fst(e) and snd(e)
e Or: pattern match

Think:ans X t containsans AND a t

PRODUCTS IN HASKELL

—-— Product types look 1ike this:
myPalr :: (Bool, Int)

—— Building pairs
myPair = (True, 1234)

—-— Using palrs via projections
myFst = fst myPair —-- True
mySnd = snd myPalr —-—- 1234

RECORDS IN RASKELL

e “Record types”: products in disguise

—-— Declaring a record type
data RecordType = MkRt { getBool :: Bool, getInt :: Int }
myRecord :: RecordType

—— Building records
myRecord = MkRt { getBool = True, getlInt = 1234 }

—— Using records via accessors
myBool = getBool myRecord —-- True
myInt = getInt myRecord -- 1234

—— Us1ing records pattern match
myFoo = case myRecord of
MkRt { getBool = b, getInt = 1 } -> ... b ... 1

SUM TYPES

1. Type of the form s + t, where s, t are types

2. Constructing sums: inl(eq), inr(es)

3. Destructing sums: case analysis/pattern match
e Can'tuse fst/snd: don't know ifitsansorat!

Think:ans + t containsans ORa t

SUMS IN HASRELL

—— Sum types look 1ike this:
data RoolPlusInt = Inl Bool | Inr Int

—-— Building sums: two ways
myBool = Inl True :: BoolPlusInt
myInt = Inr 1234 :: BoolPlusInt

—-— Using sums: pattern match

myFun :: BoolPlusInt -> String
myFun bOrI = case bOrI of
Inl b -> "Got bool: " ++ (show Db)

Inr 1 -> "Got int: " ++ (show 1)

THE ALGEBRA OF
DATATYPES

WHAT IS AN ALGEBRA?

e A bunch of stuff you can multiply and add together
e Think: high-school algebra, polynomials, etc.
e How can we multiply and add types?’

More care needed for non-termination
(Course theme: we won't be careful)

WHEN ARE TWO TYPES “THE SAME™

e Given two equivalent types t and s:
= Program (function) convertingt to s

= Program (function) convertingsto t
= Converting back and forth should be identity
e We call such types isomorphic,and writet = S

FINITE TYPES

e Atype with novalues: O ("Void”/"Empty”/“False”)
= No constructors
e Atype with one possible value: 1 (“Unit”)

= Exactly one constructor: ()
e Atype with two possible values: 2 (*Bool”)

= Exactly two constructors: true and false
e Atype with three possible values: 3 ("Three”)

EXPECTED EQUATIONS HOLD!

e Basic arithmetic
2x2=21+14+141= 4
e Commutativity
t Xs= s Xt t4+s= s+t
e Associativity

by + (b2 +t3) = (t1 + t2) + t3

EXPONENTIALS

e Write st for function typest — S

e Satisfies the expected properties, for instance:
= Arithmetic: 2% 2 4.t° 2 t X t
« Towerrule: (Z*)* = Z2*%
_ ZX+Y ~ ZX ¢ ZY

DERIVATIVES

e High-school calculus: derivative of X ™ isn x X*~1

m Surprisingly: forms the zipper of a type!
= Original type with a “hole” in it
e Example: derivativeof pairt X tis2 Xt = t +t

m | eft: hole in first component, t in second
= Right: hole in second component, t in first

INDUCTIVE TYPES

data List a = N1l | Cons a (List a)

e Reading: should satisfy List(t) = 1 + t x List(t)
e Onesolution:1 +t +t% +t3 + - - -
= Reading: either empty, or one t, or two t, ...

e Takederivative:1 +2 X t +3 X t% 4 - --
= You've programmed with this type before...

HASKELL WRAPUP

HIGHLY EXPERIMENTAL

e Original goal: implement a lazy language

e An academic experiment that escaped from the lab
= “Avoid success at all costs”

e Remains a testbed for wild and wacky PL ideas

e GHC has a huge list of experimental flags

= |ncoherentlnstances, Undecidablelnstances,
RankNTypes, GADTs, ...

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html

HASKELL IS EXTREME

e Extreme control of side-effects: can't just print a line!
e Pervasive use of monads: hard to avoid
e Style encourages lots of symbol operators
= |[mpossible to Google, looks like line noise
e Takes abstraction to an extreme
= Highly generic and reusable code
= Very dense: looks small, but unpacks to a lot

TREMENDOUS INFLUENCE

e Popularized many features
= Typeclasses and polymorphism
= Algebraic datatypes and pattern matching
= Higher-order functions
e Showed: strongly-typed languages can be elegant
= Every language should have type inference
e Changed how people think about programming
= Got lots of people to learn about monads

DOES ANYONE USE THIS?

e More than you might think

m Finance: Credit Suisse, DB, JPM, Standard
Chartered, Barclays, HF T shops, ...

= Big tech: Microsoft, Facebook, Google, Intel, ...
m R&D: Galois, NICTA, MITRE, ...
= Security: Kaspersky, lots of blockchain, ...
= Startups: too many

e Strengths
s Anything working with source code
m Static analysis, transformations, compilers, ...
= Hardware design

https://github.com/erkmos/haskell-companies
https://wiki.haskell.org/Haskell_in_industry

CAN TRIS STUFF GO FAST?

e Haskell code can be really fast

= Can be competitive with C, sometimes

= GHC is highly optimizing, use purity and types
e Performance tuning makes a huge difference

= Requires very solid understanding of GHC

= Few resources, somewhat of a dark art

= You have to know what you're doing

https://donsbot.wordpress.com/2008/06/04/haskell-as-fast-as-c-working-at-a-high-altitude-for-low-level-performance/
https://chrisdone.com/posts/fast-haskell-c-parsing-xml
https://markkarpov.com/post/migrating-text-metrics.html
https://two-wrongs.com/on-competing-with-c-using-haskell
http://www.scs.stanford.edu/16wi-cs240h/

LAZY VERSUS EAGER

e [aziness is double-edged
e Elegant, simple code via recursion
= Very natural to work with infinite data
= Usually don't hit non-termination
e Hard to reason about performance, especially space
= Things might not be run when you think they are
m “Space leaks”: buildup of suspended computations

LESS RADICAL COUSINS

e Haskell is a member of the ML family of languages
e Same family: OCaml, SML, F#, Purescript, ...

= More popular in industry

= B version with curly braces and semicolons
e General features

m Fager, easier to reason about performance

= No control of side effects (no monads)

= No typeclasses (but real modules)

= Syntax is very similar to Haskell

https://reasonml.github.io/

SCRATCHING THE SURFACE

e Much more to Haskell than we covered
= Type level programming, dependent types
= Concurrency and parallelism
= Generic Haskell (how does derive work?)

= Arbitrarily complex category theory stuff

e Related systems
= Liquid Haskell: types with custom assertions
= Agda: computer-aided proof assistant

https://ucsd-progsys.github.io/liquidhaskell-blog/
https://wiki.portal.chalmers.se/agda/pmwiki.php

