
LECTURE 12
Theory and Design of PL (CS 538)

March 2, 2020

NEWS

MIDTERM
This Friday from 2:30-3:45 in CS 1325

Makeup: Wednesday from 6:00-7:15 in TBA
Exam format

75-minutes, short-answer, in-class exam
No aids/notes/electronics allowed

How to prepare
Written (~25%): look at WRs, solutions
Programming (~75%): read/write Haskell (HW3)

COURSE EVALS
Midterm course evals open now until Friday
Please put feedback on anything in this course
I will read and think about all of your feedback

APPLICATIVE VERSUS
MONADIC

REVIEW: APPLICATIVE AND MONAD
class Functor f => Applicative f where
 pure :: a -> f a -- Required op. 1: pure
 (<*>) :: f (a -> b) -> f a -> f b -- Required op. 2: ap

class Applicative m => Monad m where
 return :: a -> m a -- Required op. 1: return
 (>>=) :: m a -> (a -> m b) -> m b -- Required op. 2: bind

REMEMBER: CALCULATOR
Grammar of a simple calculator language

Model with these two Haskell datatypes:

term = atom "+" term | atom "-" term | atom ;
atom = num | "(" term ")" ;

data Term = Add Atom Term | Sub Atom Term | Single Atom
data Atom = Num Int | Parens Term

APPLICATIVE-STYLE PARSING
Use applicative/alternative instances for Parser:

termP :: Parser Term
termP = Add <$> atomP <* (tokenP (charP '+')) <*> termP
 <|> Sub <$> atomP <* (tokenP (charP '-')) <*> termP
 <|> Single <$> atomP

atomP :: Parser Atom
atomP = Num <$> intP
 <|> Parens <$>
 (tokenP $ charP '(') *> termP <* (tokenP $ charP ')')

PARSER HAS A MONAD INSTANCE
But Parser also has a Monad instance:

termP' = do a <- atomP'
 tokenP (charP '+')
 t <- termP'
 return $ Add a t
 <|> do a <- atomP'
 tokenP (charP '-')
 t <- termP'
 return $ Sub a t
 <|> do a <- atomP'
 return $ Single a -- or: Single <$> a

atomP' = do i <- intP
 return $ Num i
 <|> -- ...

COMPARING THE TWO STYLES
The two styles can be freely mixed
Applicative-style

Shorter, more condensed
Can be complicated to ignore/keep things

Monadic-style (do-notation)
Longer, more verbose
Sequential steps are clearer (imperative)

MONADS AS
COMPUTATIONS

WHAT “IS” A MONAD?
No single interpretation—it’s just a pattern!
Useful for describing “computations”
Take a type m a
a is the type of stuff that is “returned”

m augments a with “side information”

m a is a type of computation returning stuff of type a

“PROGRAMMABLE SEMICOLON”
Usually: function composition for sequencing
But: sometimes we want fancier behavior

Maintain a log, update state, …
But: sometimes we don’t want to execute just yet

Store for processing later, add more steps, …
Monad instances let us de�ne how to sequence stuff

Handle “plumbing” for side information

ASSEMBLE A COMPUTATION WITHOUT
RUNNING IT

Distinguish between normal values and computations
Cakes versus recipes

Use (Haskell) programs to build (monadic) programs
Pass computations around
Repeat computations
Combine computations in custom ways

Only run computations when and where we want

SIDE-EFFECTS AND
PURITY

WHAT IS A SIDE-EFFECT?
Anything a function depends on besides input

Reading a con�guration �le
Getting the current local time

Anything a function does besides making output
Establishing a network connection
Opening the pod bay doors

PURITY: NO SIDE-EFFECTS
All functions in Haskell are pure
Use monads to express side-effecting computations

Need to speci�cally indicate in types
Note: not all monads model side-effects

SIMPLER TO THINK ABOUT
Function output depends only on the input

No hidden state
No hidden dependencies
No hidden actions

Input is a lot simpler than state of the world

EASIER TO TEST
Doesn’t depend on external environment
Totally repeatable and deterministic

If it does X, it will always do X
No matter time of day, other parts of program, etc.

WON’T INDIRECTLY AFFECT OTHER
COMPONENTS

Code changes will only affect input-output
Won’t step on some shared state
Won’t mess up other components “indirectly”

Modularity and abstraction taken to the limit
Callers can only observe input/output
Can never be affected by calling a function

WHAT IF WE NEED SIDE-
EFFECTS?

SOMETIMES, HAVE TO…
Want the program to do something when we run it!

Print to the screen
Write a �le
Turn on the lights

Would be bad if we could never do this

EFFECTS MARKED IN TYPES
Haskell effects managed by monads
Types say: danger!

May do stuff besides returning a value
May modify hidden state, do I/O, …

Allowed effects depend on the kind of monad

REVISITING THE STATE
MONAD

STATEFUL PROGRAMS
“Function with state” produces output, and
transforms state
A few ingredients:

State is of type s
Output is of type a

Take start state to output value, plus new state

data State s a = MkState (s -> (a, s))

MAKING IT INTO A MONAD
Return: turn ordinary output value into stateful
program producing that value
Bind is a bit more complicated
1. Run �rst stateful program
2. Look at the output value of the �rst part
3. Select and run second stateful program

MORE CONCRETELY…
return :: a -> State s a
return val = MkState (\state -> (val, state))
-- ^-State unchanged-^

(>>=) :: State s a -> (a -> State s b) -> State s b
first >>= f = MkState $ \st ->
 case first of
 MkState stTrans1 -> let (out', st') = stTrans1 st
-- ^--- Run part 1
 in case (f out') of MkState stTrans2 -> stTrans2 st'
-- ^--- Select part 2 ^--- Run part 2

GETTING THE RESULT OUT
Given stateful program, how do we “run” it?

How do we get the result out?
Need: initial value of the state
Running turns State s a into a normal value

runState :: State s a -> s -> (a, s)
runState (MkState stateTrans) initState = stateTrans initState

A MONAD FOR
ARBITRARY SIDE-

EFFECTS

HASKELL MAIN PROGRAM

Why does main always have this type in Haskell?

What is this type, really?
In fact, IO is a monad!

() is the “return” type

main :: IO ()
main = ...

IO IS A SPECIAL MONAD
All side-effects are allowed!

Can do general input/output actions
Can interact with the external world

This is the only place where input/output allowed
No Haskell de�nition—it is a completely built-in type

GETTING THE RESULT OUT (?)
Say we have a IO Int. How to get the Int out?

Is there a function of type IO Int -> Int?

Why? IO Int gives Int and may do real-world stuff
Can’t turn this into a pure computation

There is no way to do this!

PROGRAMMING WITH IO

CONSOLE OUTPUT
All basic printing functions “live in IO”

putChar :: Char -> IO () -- Print a character
putStr :: String -> IO () -- Print a string
putStrLn :: String -> IO () -- Print a string and newline

main :: IO ()
main = do
 putChar "Q"
 putStr " is my favorite character.\n"
 putStrLn "Tada!"

CONSOLE INPUT
All basic reading functions “live in IO”

getChar :: IO Char -- Read a character from console
getLine :: IO String -- Read a string from console

main :: IO ()
main = do
 putStrLn "Enter a character: "
 c <- getChar
 putStrLn "\nEnter a string: "
 str <- getLine
 putStrLn $ "Got: " ++ c ++ " and " ++ str

INTERACT
Useful utility: read a string, transform it, print it

Pattern: separate pure and impure functions

interact :: (String -> String) -> IO () -- Read, transform, print

-- Very complicated processing, but pure function
complicatedPureStuff :: String -> String
complicatedPureStuff str = ...

main :: IO ()
main = do
 putStr "Enter something! "
 interact complicatedPureStuff
 putStrLn "\n All done!"

FILESYSTEM I/O
Type of �le system paths (depends on system)

Library functions for reading/writing: all in I/O!

type FilePath = ...

-- Read file into a string
readFile :: FilePath -> IO String

-- Write string to file
writeFile :: FilePath -> String -> IO ()

-- Append string to file
appendFile :: FilePath -> String -> IO ()

MUTABLE REFERENCES
In pure Haskell, variables can’t be changed/mutated
In IO monad, can make mutable references

data IORef a -- Built-in type

newIORef :: a -> IO (IORef a) -- New cell w/initial value
readIORef :: IORef a -> IO a -- Read contents from cell
writeIORef :: a -> IORef a -> IO () -- Write contents to cell

IMPERATIVE HASKELL
Operations in IO allow imperative programming

Quite a lot of trouble just to increment a counter…
Only use where absolutely necessary
Pure functions strongly preferred in Haskell

main :: IO ()
main = do
 myRef <- newIORef 0 -- New counter, init 0
 count <- readIORef myRef -- Read count
 putStrLn $ "Count: " ++ (show count)
 writeIORef (count + 1) myRef -- Update count
 count' <- readIORef myRef -- Read again
 putStrLn $ "Count: " ++ (show count')

ORGANIZING I/O IN HASKELL

THINKING ABOUT IO

“WORLD TRANSFORMER”
Idea: running IO a can literally change the world

Imagine IO as the biggest State monad ever:

WorldState is the state of the whole world
Note: this isn’t actually how it works

data State s a = MkState (s -> (a, s))
data IO a = MkIO (WorldState -> (a, WorldState))
-- Think: IO a === State WorldState a

WHEN DO IO EFFECTS “HAPPEN”?
No matter what, all Haskell functions are pure
Suppose: call a function of type IO a -> IO b

Just changes one computation into another
This doesn’t cause effects!

IO EFFECTS HAPPEN “EXTERNALLY”
Side effects actually take place when IO a is “run”

But: can’t run IO directly within Haskell!
One way to think about IO in Haskell
1. Build up a huge side-effecting computation (main)

2. Hand whole thing off for user to run

“CAKE RECIPE”
If something has type Cake, it’s a cake
If something has type IO Cake, it’s a cake recipe

A cake recipe is different from a cake!

BUILDING RECIPES
Monad operations: combine recipes together

Do recipes one after another
Add extra steps to a recipe
Choose between different recipes

But no matter what, we will always have
just a cake recipe, and not a cake!

HOW DO WE GET THE CAKE?
The whole recipe: special symbol main, type IO ()
Purpose of Haskell programs is to build this recipe
The actual cake is made when program is executed

PROGRAMMING WITH
MONADS

SEQUENCING
Given: list of computations each returning a
Build: computation returning list of a

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (comp:comps) = do res <- comp
 rest <- sequence comps
 return (res:rest)

REPEATING
Given: integer count and computation returning a
Build: computation returning list of a

replicateM :: Monad m => Int -> m a -> m [a]
replicateM 0 comp = return []
replicateM n comp = do res <- comp
 res' <- replicateM (n - 1) comp
 return (res:res')

MAPPING
Given:

Function from a to computation returning b
A list of a’s

Build:
Computation returning list of b’s

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f [] = return []
mapM f (x:xs) = do res <- f x
 res' <- mapM f xs
 return (res:res')

FOLDING
Given:

Function: b and a to computation returning b
Initial value of accumulator b
List of a’s

Build:
Computation “folding” list into a b

foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b
foldM f seed [] = return seed
foldM f seed (x:xs) = do accum <- foldM f seed xs
 f accum x

