LECTURE 12

Theory and Design of PL (CS 538)
March 2, 2020

MIDTERM

e This Friday from 2:30-3:45 in CS 1325
= Makeup: Wednesday from 6:00-7:15 in TBA
e Exam format
= /5-minutes, short-answer, in-class exam
= No aids/notes/electronics allowed
e How to prepare
s Written (~25%): look at WRs, solutions
®» Programming (~75%): read/write Haskell (HW3)

COURSE EVALS

e Midterm course evals open now until Friday
e Please put feedback on anything in this course
e | will read and think about all of your feedback

APPLICATIVE VERSUS
MONADIC

REVIEW: APPLICATIVE AND MONAD

class Functor £ => Applicative f where
pure ::a —> £ a —-— Required op. 1: pure
(<*>) :: £ (a -=> b) > £ a -> £ b —-- Required op. 2: ap

class Applicative m => Monad m where
return :: a -> m a -— Required op. 1: return
(>>=) ::ma —-> (a ->mb) -> m b -- Regquired op. Z2: bind

REMEMBER: CALCULATOR

e Grammar of a simple calculator language

atom "+" term | atom "-" term | atom ;
num | 1A (" term ") (A °

Term
atom

e Model with these two Haskell datatypes:

data Term
data Atom

Add Atom Term | Sub Atom Term | Single Atom
Num Int | Parens Term

APPLICATIVE-STYLE PARSING

e Use applicative/alternative instances for Parser:

termP ::
termP =
<|>
<|>

atomP ::
atomP =
<|>

Parser Term

Add <S$> atomP <* (tokenP (charP '"+')) <*> termP
Sub <S> atomP <* (tokenP (charP '-')) <*> termP
Single <$> atomP

Parser Atom

Num <S> intP

Parens <S>

(tokenP $ charP '"(') *> termP <* (tokenP $ charP '")'")

PARSER HAS A MONAD INSTANGE

e But Parser also has a Monad instance:

do a <- atomP'
tokenP (charP '+'")
t <- termP'
return $ Add a t
<|> do a <- atomP'
tokenP (charP '-")
t <- termP'
return $ Sub a t
<|> do a <- atomP'
return $ Single a —-- or: Single <$> a

termP'

do 1 <- 1ntP
return S Num 1
<|> —--

atomP'

COMPARING THE TWO STYLES

e The two styles can be freely mixed
e Applicative-style

m Shorter, more condensed

= Can be complicated to ignore/keep things
e Monadic-style (do-notation)

= onger, more verbose

s Sequential steps are clearer (imperative)

MONADS AS
COMPUTATIONS

WHAT “IS" A MONAD?

e Nosingle interpretation—it’'s just a pattern!
o Useful for describing “computations”
e Takeatypem a

m 5 is the type of stuff that is “returned”
= m augments a with “side information”
e m alsatype of computation returning stuff of type a

“PROGRAMMABLE SEMICOLON"

e Usually: function composition for sequencing

e But: sometimes we want fancier behavior
= Maintain a log, update state, ...

e But: sometimes we don't want to execute just yet
m Store for processing later, add more steps, ...

e Monad instances let us define how to sequence stuff
= Handle “plumbing” for side information

ASSEMBLE A COMPUTATION WITROUT
RUNNING IT

e Distinguish between normal values and computations
m Cakes versus recipes

e Use (Haskell) programs to build (monadic) programs
m Pass computations around
s Repeat computations
= Combine computations in custom ways

e Only run computations when and where we want

SIDE-EFFECTS AND
PURITY

WHAT IS A SIDE-EFFECT?

e Anything a function depends on besides input
= Reading a configuration file
m Getting the current local time
e Anything a function does besides making output
= Establishing a network connection
= Opening the pod bay doors

PURITY: NO SIDE-EFFECTS

e All functions in Haskell are pure

e Use monads to express side-effecting computations
= Need to specifically indicate in types
= Note: not all monads model side-effects

SIMPLER T0 THINK ABOUT

e Function output depends only on the input
= No hidden state
= No hidden dependencies
= No hidden actions

e Inputis alot simpler than state of the world

EASIER TO TEST

e Doesn't depend on external environment
e Totally repeatable and deterministic
= |f it does X, it will always do X
= No matter time of day, other parts of program, etc.

WON'T INDIRECTLY AFFECT OTHER
COMPONENTS

e Code changes will only affect input-output
= \Won't step on some shared state
= \Won't mess up other components “indirectly”
e Modularity and abstraction taken to the limit
= Callers can only observe input/output
= Can never be affected by calling a function

WHAT IF WE NEED SIDE-
EFFECTS?

SOMETIMES, HAVE T0...

e Want the program to do something when we run it!
= Print to the screen
= Write afile
= Turnon the lights

e Would be bad if we could never do this

EFFECTS MARKED IN TYPES

e Haskell effects managed by monads
e Types say: danger!
= May do stuff besides returning a value

= May modify hidden state, do 1/0, ...
e Allowed effects depend on the kind of monad

REVISITING THE STATE
MONAD

STATEFUL PROGRAMS

e “Function with state” produces output, and
transforms state

e Afew ingredients:
m Stateis of type s

= Qutput is of type a
e Take start state to output value, plus new state

data State s a = MkState (s -> (a, s))

MARING T INTO A MONAD

e Return: turn ordinary output value into stateful
program producing that value
e Bind is a bit more complicated
1. Run first stateful program
2. Look at the output value of the first part
3. Select and run second stateful program

MORE CONCRETELY...

return :: a —> State s a
return val = MkState (\state -> (val, state))
- "-State unchanged-"

(>>=) :: State s a -> (a —-> State s b) —-> State s Db
first >>= f MkState S \st ->
case first of

MkState stTransl -> let (out', st') = stTransl st

o A

—-—— Run part 1
in case (f out') of MkState stTrans?2 -> stTrans?2 st'

A

—= -—— Select part 2 “——— Run part 2

GETTING THE RESULT OUT

e Given stateful program, how do we “run” it?
= How do we get the result out?
e Need: initial value of the state
e Runningturns State s aintoanormalvalue

runState :: State s a -> s -> (a, 3)
runState (MkState stateTrans) 1nitState = stateTrans 1nitState

A MONAD FOR
ARBITRARY SIDE-
EFFECTS

HASKELL MAIN PROGRAM

main = ...

e Why does ma in always have this type in Haskell?

e What is this type, really?
= |n fact, IO Is a monad!

= () isthe “return” type

1015 A SPECIAL MONAD

e All side-effects are allowed!
= Can do general input/output actions
= Can interact with the external world
e This is the only place where input/output allowed
e No Haskell definition—it is a completely built-in type

GETTING THE RESULT OUT (?)

e Saywehavea IO Int.Howto getthe Intout?
e |[sthere afunctionoftype IO Int -> Int?

There is no way to do this!

e Why? IO Int gives Int and may do real-world stuff
= Can’t turn this into a pure computation

PROGRAMMING WITR 10

CONSOLE OUTPUT

e All basic printing functions “live in 10”

putChar :: Char -> TO () —— Print a character
putStr :: String -> IO () —-— Print a string
putStrLn :: String -> IO () —-— Print a string and newline
mailn :: IO ()
malin = do
putChar "Q"
putStr " is my favorite character.\n"

putStrLn "Tada!"

CONSOLE INPUT

e All basic reading functions “live in 10"

getChar :: I0 Char —-— Read a character from console
getLine :: IO String -- Read a string from console
maln :: IO ()

maln = do

putStrLn "Enter a character: "
C <- getChar
putStrLn "\nEnter a string:
str <- getline
putStrln $ "Got: " 4+ ¢ ++ " and " ++ str

1A

INTERACT

e Useful utility: read a string, transform it, print it

interact :: (String -> String) -> I0 () —-- Read, transform, print

e Pattern: separate pure and impure functions

-— Very complicated processing, but pure function
complicatedPureStuff :: String -> String
complicatedPureStuff str = ...

malin :: IO ()

maln = do
putStr "Enter something! "
interact complicatedPureStuff
putStrn "\n All done!"

FILESYSTEM 1/0

e Type of file system paths (depends on system)

type FilePath = ...

e Library functions for reading/writing: all in 1/O!

-— Read file into a string
readFile :: FilePath -> IO String

-— Write string to file
writeFile :: FilePath -> String -> IO ()

-— Append string to file
appendFile :: FilePath -> String -> IO ()

MUTABLE REFERENCES

e |[n pure Haskell, variables can’'t be changed/mutated
e |n IO monad, can make mutable references

data IORef a —— Built-1in type
newlIQORef :: a —> IO (IORef a) —— New cell w/initial value
readIORef :: IORef a -> IO a —-— Read contents from cell

writeIORef :: a —-> IORef a -> IO () —— Write contents to cell

IMPERATIVE HASKELL

e Operations in 1O allow imperative programming

main :: IO ()
maln = do
myRef <- newIORef O -— New counter, init 0
count <- readIORef myRef —— Read count
putStrLn $ "Count: " ++ (show count)
writeIORef (count + 1) myRef —— Update count
count' <- readIORef myRef -— Read again
putStrLn $ "Count: " ++ (show count')

e Quite alot of trouble just to increment a counter...
= Only use where absolutely necessary
= Pure functions strongly preferred in Haskell

ORGANIZING 1/0 IN HASKELL

THINKING ABOUT 10

“WORLD TRANSFORMER"

e |[dea: running IO a can literally change the world
e [magine |O as the biggest State monad ever:

data State s a = MkState (s -> (a, S))
data IO a = MkIO (WorldState -> (a, WorldState))
—— Think: IO a === State WorldState a

e WorldState s the state of the whole world
= Note: this isn’'t actually how it works

WHEN DO 10 EFFECTS “HAPPEN"?

e No matter what, all Haskell functions are pure
e Suppose: call afunctionoftype IO a -> IO b

m Just changes one computation into another
= This doesn’t cause effects!

10 EFFECTS HAPPEN “EXTERNALLY"

e Side effects actually take place when I0 ais “run”

= But: can't run IO directly within Haskell!
e One way to think about 10 in Haskell
1. Build up a huge side-effecting computation (main)

2. Hand whole thing off for user to run

“GAKE RECIPE"

e [f something has type Cake, it's a cake
e [f something has type IO Cake,it's a cake recipe

A cake recipe Is different from a cake!

BUILDING RECIPES

e Monad operations: combine recipes together
m Do recipes one after another
= Add extra steps to a recipe
= Choose between different recipes

But no matter what, we will always have
Just a cake recipe, and not a cake!

HOW DO WE GET TRE CARE?

e The whole recipe: special symbolmain, type IO ()

e Purpose of Haskell programs is to build this recipe
e The actual cake is made when program is executed

PROGRAMMING WITh
MONADS

SEQUENCING

e Given: list of computations each returning a
e Build: computation returning list of a

sequence :: Monad m => [m a] —-> m [a]
sequence ||
sequence (comp:comps)

return ||

do res <- comp
rest <—- seguence comps
return (res:rest)

REPEATING

e Given: integer count and computation returning a
e Build: computation returning list of a

replicateM :: Monad m => Int -> m a -> m [a]
replicateM 0 comp = return []
replicateM n comp = do res <- comp

res' <- replicateM (n - 1) comp

return (res:res')

MAPPING

e Given:
= Function from a to computation returning b

m Alistofa’s

e Build:
= Computation returning list of b’s

=> (a > m b) -> [a] -> m [Db]
return ||
do res <- f x

res' <- mapM f Xs

mapM :: Monad
mapM £ []
mapM f (x:xs)

=

return (res:res')

fo
fo
fo

Given:

= Function: b and a to computation returning b

FOLDING

m |nitial value of accumulator b
m [jstofa’s

Build:

s Computation “folding” listintoa b

1dM :: Monad m =>
1dM £ seed
1dM £ seed

]

(X:xX3)

(b

-> a ->m b) -=> b =-> [a] => m Db
return seed
do accum <- foldM f seed xs
f accum X

