
LECTURE 11
Theory and Design of PL (CS 538)

February 26, 2020

BEYOND APPLICATIVE

WARMUP: TWO OF THE SAME CHAR
Write function: take char, parse two of the char

twinCharP :: Char -> Parser (Char, Char)
twinCharP c = pair <$> charP c <*> charP c
 where pair x y = (x, y)
 -- shorter: (,) <$> charP c <*> charP c

MAKE THIS WORK FOR ANY CHAR?
We want a parser of this type:

A �rst try: brute force the cases:

This is going to be quite painful…

sameTwoP :: Parser (Char, Char)

sameTwoP = twinCharP 'a'
 <|> twinCharP 'b'
 <|> twinCharP 'c'
 -- ...

WANTED: NEW WAY TO COMBINE PARSERS
Here’s what we have so far:

To combine, want something of the type:

itemP :: Parser Char -- parse one of any Char

oneMore :: Char -> Parser (Char, Char)
oneMore c = addC <$> charP c
 where addC = \x -> (c, x)

sameTwoP = combiner itemP oneMore

combiner :: Parser Char
 -> (Char -> Parser (Char, Char))
 -> Parser (Char, Char)

A COMMON PATTERN
FOR SEQUENCING

UNRELIABLE COMPUTATIONS
Two unreliable computations:

How to string them together?

foo :: a -> Maybe b
bar :: b -> Maybe c

foobar :: a -> Maybe c
foobar x = case foo x of
 Nothing -> Nothing
 Just y -> case bar y of
 Nothing -> Nothing
 Just z -> Just z

WHAT ABOUT ONE MORE?

Starting to get a bit unwieldy…

foo :: a -> Maybe b
bar :: b -> Maybe c
baz :: c -> Maybe d

foobarbaz :: a -> Maybe d
foobarbaz x = case foo x of
 Nothing -> Nothing
 Just y -> case bar y of
 Nothing -> Nothing
 Just z -> case baz z of
 Nothing -> Nothing
 Just w -> Just w

PROGRAMS WITH LOGGING
Two computations with logging:

How to string them together, while keeping logs?

foo :: a -> (b, String)
bar :: b -> (c, String)

foobar :: a -> (c, String)
foobar x = let (y, log1) = foo x in
 let (z, log2) = bar y in
 (z, log1 ++ log2)

WHAT ABOUT ONE MORE?

Starting to get a bit unwieldy…

foo :: a -> (b, String)
bar :: b -> (c, String)
baz :: c -> (d, String)

foobarbaz :: a -> (c, String)
foobarbaz x = let (y, log1) = foo x in
 let (z, log2) = bar y in
 let (w, log3) = bar y in
 (w, log1 ++ log2 ++ log3)

MAINTAINING A COUNTER
Two computations modify a counter

How to string together?

-- Input: init counter. Output: updated counter + output string
foo :: Int -> (Int, String)
bar :: Int -> (Int, String)

foobar :: Int -> String
foobar c = let (c', out') = foo c in
 let (c'', out'') = bar c' in
 out''

WHAT ABOUT ONE MORE?

Starting to get a bit unwieldy…

-- Input: init counter. Output: updated counter + output string
foo :: Int -> (Int, String)
bar :: Int -> (Int, String)
baz :: Int -> (Int, String)

foobarbaz :: Int -> String
foobarbaz c = let (c', out') = foo c in
 let (c'', out'') = bar c'' in
 let (c''', out''') = bar c''' in
 out'''

WHAT IS THE PATTERN?

TWO OPERATIONS
Wrapping a normal value into a “monadic” value

Package an “output” value with some extra data
Transforming a monadic value
1. �rst monadic value
2. function from regular value to monadic value

Plug pieces together to get another monadic value

THE MONAD TYPECLASS
These two operations are called return and bind

class Applicative m => Monad m where
 return :: a -> m a -- Required op. 1: return
 (>>=) :: m a -> (a -> m b) -> m b -- Required op. 2: bind

 (>>) :: m a -> m b -> m b -- Special case of bind

EXAMPLE: MAYBE
Maybe a is either an a, or nothing

instance Monad Maybe where
 -- Given normal value, wrap it with Just
 -- return :: a -> Maybe a
 return val = Just val

 -- Compose two Maybe computations
 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 maybe >>= f = case maybe of
 Nothing -> Nothing -- First computation failed
 Just val -> f val -- First computation OK, run second

EXAMPLE: WITHLOG
WithLog a is an a with a String log

Also known as the Writer monad

data WithLog a = MkWithLog (a, String)

instance Monad WithLog where
 -- return :: a -> WithLog a
 return val = MkWithLog (val, "")
-- ^-- Empty log
 -- (>>=) :: WithLog a -> (a -> WithLog b) -> WithLog b
 logA >>= f = let MkWithLog (output, log) = logA in
 let MkWithLog (output', log') = f output in
 MkWithLog (output', log ++ log')
-- ^--join--^

EXAMPLE: STATE
State s a is computation that returns an a

data State s a = MkState (s -> (a, s))

instance Monad (State s) where
 -- return :: a -> State s a
 return val = MkState (\state -> (val, state))
-- ^-- unchanged --^
 -- (>>=) :: State s a -> (a -> State s b) -> State s b
 (MkState stTrans1) >>= f = MkState $ \st ->
 MkState stTrans1 -> let (out', st') = stTrans1 st in
-- ^-Part 1-^
 let (MkState stTrans2) = (f out') in stTrans2 st'
-- ^-Part 2-^

NICER SYNTAX:
DO-NOTATION

UNWIELDY MAYBE EXAMPLE…
foo :: a -> Maybe b
bar :: b -> Maybe c
baz :: c -> Maybe d

foobarbaz :: a -> Maybe d
foobarbaz x = case foo x of
 Nothing -> Nothing
 Just y -> case bar y of
 Nothing -> Nothing
 Just z -> case baz z of
 Nothing -> Nothing
 Just w -> Just w

USE MONAD INSTANCE

Common pattern: monad value, >>=, lambda

foo :: a -> Maybe b
bar :: b -> Maybe c
baz :: c -> Maybe d

foobarbaz :: a -> Maybe d
foobarbaz x = foo x >>= (\y ->
 bar y >>= (\z ->
 baz z >>= (\w ->
 return w)))

APPLYING A BIND
Turn monVal >>= (\var -> ...) into

Variant of bind: the following are equivalent:
monVal >> ...
monVal >>= (_ -> ...)

do var <- monVal
 ...

do monVal
 ...

TRANSLATING OUR EXAMPLE
Before, without do-notation

With do-notation (watch indentation)

foobarbaz x = foo x >>= (\y ->
 bar y >>= (\z ->
 baz z >>= (\w ->
 return w)))

foobarbaz x = do y <- foo x
 z <- bar y
 w <- baz z
 return w

COMPACT DO-NOTATION
Do-notation uses indentation and linebreaks

Can also use braces and semicolons

foobarbaz x = do y <- foo x
 z <- bar y
 w <- baz z
 return w

foobarbaz x = do { y <- foo x ;
 z <- bar y ; w <- baz z ;
 return w }

GENERAL ADVICE
Do-notation is very clean, but it hides a lot
Try to start with >>= and return

Unfold de�nition of these operations
Easier to see what’s going on (just functions)
Easier to see that types are correct

WR3: practice do-notation

MORE MONADS

EITHER
Idea: OrErr a is either an a, or an error String

data Either a b = Left a | Right b

type OrErr a = Either String a -- give type a new name

actualInt :: OrErr Int
actualInt = Right 5000 -- Actual number 5000

errorInt :: OrErr Int
errorInt = Left "Couldn't think of a number" -- Error string

MONAD INSTANCE?
As always, follow the types…

instance Monad OrErr where
 -- return :: a -> OrErr a
 return x = Right x

 -- (>>=) :: OrErr a -> (a -> OrErr b) -> (OrErr b)
 (Left err) >>= f = Left err
 (Right val) >>= f = f val

LISTS
To give monad instance, need two functions:

Concat: take lists of lists, �atten into single list
Takes [[1, 2], [3]] to [1, 2, 3]

Map: apply function to each element of input list
Map “times 2”: takes [1, 2, 3] to [2, 4, 6]

concat :: [[a]] -> [a]

map :: (a -> b) -> [a] -> [b]

MONAD INSTANCE?
As always, follow the types…

instance Monad [] where
 -- return :: a -> [a]
 return x = [x] -- list with just one element

 -- (>>=) :: [a] -> (a -> [b]) -> [b]
 listA >>= f = concat $ map f listA -- map, then concat

REVISITING OUR
PARSER

PARSER IS A MONAD

Looks suspiciously like the State monad!
Actually: State + Maybe monad

Type of state is always String: stuff to parse
Type a is the “return type”: result of parse

data Parser a = MkParser (String -> Maybe (a, String))

data State s a = MkState (s -> (a, s))

RETURN FOR PARSERS
Return: yield output value without any parsing
Follow the types…

-- return :: a -> Parser a
return val = MkParser $ \str -> Just (val, str)

BIND FOR PARSERS
Bind: sequence parser, where second parser can
depend on �rst output
Follow the types…

-- (>>=) :: Parser a -> (a -> Parser b) -> Parser b
par >>= f = MkParser $ \str ->
 let firstRes = runParser par str -- Run parser 1
 in case firstRes of -- See what we got...
 Nothing -> Nothing -- Parser 1 failed
 Just (val, str') -> let par' = f val -- Choose parser 2
 in runParser par' str' -- Run parser 2 on rest

