LECTURE T1

Theory and Design of PL (CS 538)
February 26, 2020

BEYOND APPLICATIVE

WARMUP: TWO OF THE SAME CHAR

e Write function: take char, parse two of the char

twinCharP :: Char -> Parser (Char, Char)
twinCharP ¢ = pair <$> charP c¢ <*> charP c
where pair x v = (x, V)
—-— shorter: (,) <S> charP c <*> charP c

MARE ThIS WORK FOR ANY CHAR?

e \WWe want a parser of this type:

e Afirsttry: brute force the cases:

meTwoP = twinCharP 'a'
<|> twinCharP 'b'
<|> twinCharP 'c'

e Thisis going to be quite painful...

WANTED: NEW WAY TO COMBINE PARSERS

e Here's what we have so far:

itemP :: Parser Char —-- parse one of any Char

oneMore :: Char -> Parser (Char, Char)
oneMore ¢ = addC <$> charP c
where addC = \x -> (c, x)

sameTwoP = combiliner 1temP oneMore

e To combine, want something of the type:

combiner :: Parser Char
—> (Char -> Parser (Char, Char))
-> Parser (Char, Char)

A COMMON PATTERN
FOR SEQUENCING

UNRELIABLE COMPUTATIONS

e Two unreliable computations:

foo :: a —-> Maybe Db
bar :: b -> Maybe c

e How to string them together?

foobar :: a —-> Maybe c
foobar x = case foo x of
Nothing -> Nothing
Just y —-> case bar y of
Nothing -> Nothing
Just z -—-> Just z

WHAT ABOUT ONE MORE?

foo :: a —-> Maybe
bar :: b -> Maybe
baz :: ¢ —-> Maybe

foobarbaz :: a —>

Maybe d
foobarbaz x = case foo x

Nothing ->
Just v

Nothing
case bar vy
Nothing —->
Just z

of

Nothing

case baz z of
Nothing -> Nothing
Just w —-> Just w

e Starting to get a bit unwieldy...

PROGRAMS WITH LOGGING

e Two computations with logging:

foo :: a -> (b, String)
bar :: b -> (¢, String)

e How to string them together, while keeping logs?

foobar :: a -> (¢, String)
foobar x = let (y, logl) = foo x 1in
let (z, log2) = bar y 1in
(z, logl ++ logZ2)

foo :: a ->
bar :: b —>
baz :: ¢ —->
foobarbaz

foobarbaz x

:: a —> (¢, String)

WHAT ABOUT ONE MORE?

(b, String)
(c, String)
(d, String)

= let (y, logl) foo x in
let (z, logZ) = bar vy in
let (w, log3) = bar vy 1in

(w, logl ++ log2 ++ 1log3)

e Starting to get a bit unwieldy...

MAINTAINING A COUNTER

e Two computations modify a counter

—— Input: 1nit counter. Output: updated counter + output string
foo :: Int -> (Int, String)
bar :: Int -> (Int, String)

e How to string together?

foobar :: Int -> String
foobar ¢ = let (c¢', out') = foo ¢ 1in
let (¢'', out'') = bar c¢' 1in

out''

WHAT ABOUT ONE MORE?

—— Input: 1nit counter. Output: updated counter + output string

foo :: Int -> (Int, String)
bar :: Int -> (Int, String)
baz :: Int -> (Int, String)
foobarbaz :: Int —-> String
foobarbaz ¢ = let (c¢', out') = foo ¢ 1in
let (¢'', out'') = bar c¢'' 1in
let (¢''', out''') = bar c¢''' 1in
out'"''

e Starting to get a bit unwieldy...

WHAT IS TRE PATTERN?

TWO OPERATIONS

e Wrapping a normal value into a “monadic” value
m Package an “output” value with some extra data
e Transforming a monadic value
1. first monadic value
2. function from regular value to monadic value
m Plug pieces together to get another monadic value

THE MONAD TYPECLASS

e These two operations are called return and bind

class Applicative m => Monad m where
return :: a -> m a -— Required op. 1: return
(>>=) ::ma —-> (a ->mb) -=>m b -- Required op. Z2: bind

(>>) ::ma ->mb ->mb —-— Special case of bind

EXAMPLE: MAYBE

e Mavbe alseither an a, or nothing

instance Monad Maybe where
-— Given normal value, wrap 1t with Just
—— return :: a —-> Maybe a
return val = Just val

—— Compose two Maybe computations

-— (>>=) :: Maybe a —-> (a —-> Maybe b) —-> Maybe b
maybe >>= f = case maybe of
Nothing -> Nothing —-- First computation failed

Just val -> f wval -— First computation OK, run second

EXAMPLE: WITHLOG

e WithLog alsanawithaStringlog
m Also known as the Writer monad

data WithLog a = MkWithLog (a, String)

instance Monad WithLog where
-— return :: a —> WithLog a
return val = MkWithLog (val, "")

- "—— Empty log
-— (>>=) :: WithLog a -> (a —-> WithLog b) —-> WithLog b
logA >>= f = let MkWithLog (output, log) = 1ogA 1n
let MkWithLog (output', log') = f output in

MkWithLog (output', log ++ log')

A

- "——jolin-—-

EXAMPLE: STATE

e State s alscomputationthatreturnsan a

data State s a = MkState (s -> (a, s))

instance Monad (State s) where

-— return :: a —> State s a

return val = MkState (\state -> (val, state))
— = "—— unchanged --"

—— (>>=) :: State s a -> (a -> State s b) —-> State s b

(MkState stTransl) >>= f = MkState $ \st ->

MkState stTransl -> let (out', st') = stTransl st in
== "—Part 1-"
let (MkState stTrans?2) = (f out') in stTrans?2 st'

- "—Part 2-7

NICER SYNTAX:
D0-NOTATION

UNWIELDY MAYBE EXAMPLE...

foo :: a —-> Maybe Db
bar :: b —-> Maybe c
baz :: ¢ -> Maybe d

foobarbaz :: a —-> Maybe d
foobarbaz x = case foo x of
Nothing -> Nothing
Just y —-> case bar y of
Nothing -> Nothing
Just z -> case baz z of
Nothing -> Nothing
Just w —-> Just w

USE MONAD INSTANGE

foo :: a -> Maybe Db
bar :: b —-> Maybe c
baz :: ¢ —-> Maybe d
foobarbaz :: a —-> Maybe d

foobarbaz x = foo x >>= (\y ->
bar vy >>= (\z ->
baz z >>= (\w ->
return w)))

e Common pattern: monad value, >>=, lambda

APPLYING A BIND

e Turnmonval >>= (\var -> ...) Into

do var <- monVal

e Variant of bind: the following are equivalent:
B monVal >>

B monVal >>= (\ -> ...)

do monVal

TRANSLATING OUR EXAMPLE

e Before, without do-notation

foobarbaz x = foo x >>= (\y ->
bar v >>= (\z ->
baz z >>= (\w —->
return w)))

e With do-notation (watch indentation)

foobarbaz x = do y <- foo X
Zz <- bar vy
w <- baz =z
return w

COMPACT DO-NOTATION

e Do-notation uses indentation and linebreaks

foobarbaz x = do y <- foo X
Zz <- bar vy
w <— baz =z
return w

e Can also use braces and semicolons

foobarbaz x = do { y <- foo x ;
Zz <- bar y ; w <- baz z ;
return w |}

GENERAL ADVICE

e Do-notationis very clean, but it hides a lot
e Try tostartwith >>=and return

= Unfold definition of these operations
» Easier to see what’s going on (just functions)
m Easier to see that types are correct

e WR3: practice do-notation

MORE MONADS

EITHER

e |[dea: OrErr aliseither an a,or anerror String

data Either a b = Left a | Right Db

type OrErr a = Eilther String a -- give type a new name
actualInt :: OrErr Int

actualInt = Right 5000 -- Actual number 5000

errorInt :: OrkErr Int

errorInt = Left "Couldn't think of a number" -- Error string

MONAD INSTANGE?

e As always, follow the types...

instance Monad OrErr where

-— return :: a —-> OrErr a
return x = Right x
—— (>>=) :: OrErr a -> (a -> OrErr b) -> (OrErr b)

(Left err) >>= f = Left err
(R1ght val) >>= £ = £ val

LISTS

e To give monad instance, need two functions:

concat :: [[a]] —-> [a&]

map :: (a —> b) -> [a] —-> [Db]

e Concat: take lists of lists, flatten into single list
m Takes[[1, 2],[3]]to[1, 2, 3]

e Map: apply function to each element of input list
= Map “times 2”: takes [1, 2, 3]to[2, 4, 6]

MONAD INSTANGE?

e As always, follow the types...

instance Monad |[] where
-— return :: a —-> [a]
return x = [X] -— list with just one element
—— (>>=) :: [a] -> (a -> [b]) —-> [b]

listA >>= f = concat $ map f listA -- map, then concat

REVISITING OUR
PARSER

PARSER IS A MONAD

data Parser a = MkParser (String -> Maybe (a, String))

data State s a = MkState (s -> (a, 38))

e Looks suspiciously like the State monad!

= Actually: State + Maybe monad
e Type of state is always String: stuff to parse
e Type a is the “return type”: result of parse

RETURN FOR PARSERS

e Return:yield output value without any parsing
e Follow the types...

return val = MkParser $ \str -> Just (val, str)

BIND FOR PARSERS

e Bind: sequence parser, where second parser can
depend on first output
e Follow the types...

f val

Run parser 1

See what we got...
Parser 1 failed
Choose parser 2

—— (>>=) :: Parser a -> (a —-> Parser b) —-> Parser Db
par >>= f = MkParser $ \str ->
let firstRes = runParser par str
in case firstRes of
Nothing -> Nothing
Just (val, str') -> let par' =
in runParser par' str'

Run parser 2 on rest

