LECTURE 03

Theory and Design of PL (CS 538)
February 19,2020

G0ING BEYOND
FUNCTOR

MAPPING OVER ONE THING

e A function for shouting things:

shout :: String —-> String
shout = toUpper

-— shout "hello" === "HELLO"

e Mapping this function is easy:

shoutMaybe :: Maybe String —-> Maybe String
shoutMaybe = fmap shout

shoutList :: [String] -> [String]
shoutList = fmap shout

MAPPING OVER MORE THINGS

e A function for shouting two things?!

shout?2 :: String -> String -> String
shout?2 x y = (toUpper x) ++ " " ++ (toUpper v)
—— shout”?2 "hello" "world" === "HELLO WORLD"

e Thisis OK, but how do we map this thing?

shoutZ2Maybe :: Maybe String -> Maybe String -> Maybe String
shoutZ2Maybe = 2?27?77

THE UGLY WAY

shoutZ2Maybe :: Maybe String -> Maybe String -> Maybe String
shoutZ2Maybe Nothing = Nothing

shoutZ2Maybe Nothing = Nothing

shoutZ2Maybe (Just x) (Just y) = Just (shout2 x vy)

e Seems like a lot of trouble just to use shout?2
" shout3Maybe, shout100Mavybe,...?

AN INITIAL TRY

e We know Maybe is a Functor, so let’s try fmap
e We can map over the first argument, but then stuck:

shoutZ2Maybe :: Maybe String -> Maybe String -> Maybe String
shoutZ2Maybe mx my = let shoutFirst = fmap shoutZ2 mx in
-— shoutFirst :: Maybe (String -> String)

—— ... now what?

e Apply “Maybe (String -> String)” to “Maybe String”?

SOLUTION: APPLICATIVE

e We can solve this problem by extending Functor

class Functor £ => Applicative f where
pure :: a -> I a
(<*>) :: £ (a > b) -> £ a -> £ b —-- read: "app"

LET'S DEFINE FOR MAYBE

e As always: follow the types...

instance Applicative Maybe where

—-— pure :: a —-> Maybe a

pure xXx = Just X

—-— (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b
Nothing <*> = Nothing

<*> Nothing = Nothing

(Just £) <*> (Just x) = Just (f x)

REVISITING SHOUT...

e Now: we can define shout2Mavybe

shoutZ2Maybe :: Maybe String -> Maybe String -> Maybe String
shoutZ2Maybe mx my = let shoutFirst = fmap shoutZ2 mx in
shoutFirst <*> my

e Cleaning things up a bit more...

shoutZ2Maybe mx my = shout2 <$> mx <*> my
—-— associates left: (shoutZ2 <$> mx) <*> my

APPLICATIVE LAWS

e | aws are more complicated (don't memorize)

-— 1. 1dentity
pure id <*> v === v

-— 2. homomorphism
pure £ <*> pure X === pure (f Xx)

-— 3. 1nterchange
u <*> pure y === pure ($ y) <*> u

-— 4. composition
pure (.) <*> u <*> v <*> w === u <*> (v <*> w)

EXAMPLE: LISTS

e | et's write an applicative instance for list
e Follow the types...

instance Applicative ([]) where
-— pure :: a —-> [a]
pure x = [X]
—— (<*>) :: [a => b] -> [a] —-> [b]
(] <*> = []

(f:fs) <*> xs = fmap £ xs ++ f£s <*> Xxs

—-— associates: (fmap £ xs) ++ (fs <*> xs)

e Apply each function to every element, then collect

ANOTHER WAY: LISTS

e There's another, less obvious instance...

instance Applicative ([]) where
-— pure :: a —-> [a]
pure Xx = X : pure X -—-—- 1nfinite 1ist of X
—— (<*>) :: [a -> b] -> [a] -> [b]

fs <*> xs = zipWith ($) fs xs

e Apply each function to one element
= Relies on Haskell’s lazy evaluation...

WHAT IS PARSING?

TURN UNSTRUCTURED DATA INTO
STRUCTURED DATA

e Data is stored and transmitted as plain text
e Structure indicated by special characters
= | ine breaks and whitespace
= Commas and other punctuation
= Parentheses, matching open/close tags
e For programs to use this data, need to convert from
“list of characters” to something more structured

EXAMPLES EVERYWHERE

e Compilation

= Source code transformed to AST and compiled
e Compression

= Files converted to and from compressed form
e Networking

= HTTP headers, data feeds, APl requests, ...

e ogging
= System monitoring, error logs, ...

PARSING IS ANNOYING

e Theoretically well-studied, many algorithms
m ||, LR, Earley, CYK, shift-reduce, Packrat, ...
e Writing parsers is tedious, often use parser generators
= Write grammar in a special language, get a parser
= ANTLR, Bison, Yacg, ...
e Parser language drawbacks
= Complex and hard to read: error prone!
= Not a full-featured language

BUILDING A PARSER IN
HASRELL

PLAN FOR NEXT FEW DAYS

e Build asmall library for parsers in Haskell

e Good example of a domain-specific language (DSL)
= Small, special-purpose language
» Strength of Haskell and FP

HWS3: Extend parser with more features

MAIN PARSER TYPE

e Goal: parse astring into atype a
e Wecall (a, String) aparse (result)

= First component: output of parser
m Second component: rest of string ("" is done)
e Parser: function from string to Maybe parse

data Parser a = MkParser (String -> Maybe (a, String))

RUNNING THE PARSER

1. Plug in the input string and run function

runParser :: Parser a -> String -> Maybe (a, String)
runParser (MkParser parsefFn) 1nput = parseFn 1input

RUNNING THE PARSER

2. Filter out parses that don’'t consume whole string

getParse :: Parser a -> String —-> Maybe a

getParse parser 1nput = case runParser parser 1nput of
Nothing -> Nothing —— Parser couldn't parse anything
Just (val, "") -> Just val -- Got result, finished string

Just -> Nothing -— Got result, but leftover string

DESIGN PHILOSOPHY

1. First: tiny, building-block parsers
e Will seem really limited, almost boring
2. Next: basic ways to combine parsers
e Choice, sequencing, ...
3. Then: complex ways to combine parsers
e Repetition, separation, ...

Build big parsers out of simpler parsers!

SOME SIMPLE PARSERS

e Empty string: don’'t consume any input

emptyP :: Parser String
emptyP = MkParser $ \str -> Just ("", str)

e Parse one of any character

itemP :: Parser Char
itemP = MkParser $ \str ->
case str of
[] —-> Nothing
(c:cs) —-> Just (c, cs)

MORE SIMPLE PARSERS

e Parse one of some kind of character

charSatP :: (Char -> Bool) —-> Parser Char
charSatP predicate = MkParser $ \str ->
case str of

[] -> Nothing

(c:cs) —> 1f predicate ¢ then Just (c, cs) else Nothing
spaceP :: Parser Char
spaceP = charSatP 1sSpace
digitP :: Parser Char

digitP = charSatP 1sDigit

charP :: Char —-> Parser Char
charP ¢ = charSatP (== c)

APPLICATIVE PARSING

THE STORY S0 FAR

e Parser: input String to parsed value, rest of String
 We have: basic parsers (one char, digit, space, ...)
e Needed: parser transformers

» Take parser, change/process “parsed value”
e Needed: parser combinators

= Combine parsers into larger parsers

PARSER TRANSFORMERS

e Wanted: function with the following type

trans :: (a -> b) -> Parser a —-> Parser Db

e | ooks familiar? Let’s define a Functor instance:

instance fFunctor Parser where
-— fmap :: (a -> b) -> Parser a —-> Parser b
fmap f par = MkParser $ \str ->
case runParser par str of
Nothing -> Nothing
Just (val, str') -> Just (f wval, str')

PARSER COMBINATORS: APPLICATIVE

e Applicative will let us combine multiple parsers:

instance Applicative Parser where
-— pure :: a —> Parser a
pure x = MkParser $ \str -> Just (x, str)

—-— (<*>) :: Parser (a -> b) —-> Parser a —-> Parser b
parF <*> parA = MkParser $ \str ->
case runParser parF str of —— run first
Nothing -> Nothing -— first failed
Just (£, str') -> -— first OK
case runParser parA str' of -— run second
Nothing -> Nothing -— second failed
Just (v, str'') -> Just (f v, str'') -— second OK

e Kind of sequencing: feed str' to second parser

