
LECTURE 09
Theory and Design of PL (CS 538)

February 19, 2020

GOING BEYOND
FUNCTOR

MAPPING OVER ONE THING
A function for shouting things:

Mapping this function is easy:

shout :: String -> String
shout = toUpper

-- shout "hello" === "HELLO"

shoutMaybe :: Maybe String -> Maybe String
shoutMaybe = fmap shout

shoutList :: [String] -> [String]
shoutList = fmap shout

MAPPING OVER MORE THINGS
A function for shouting two things?!

This is OK, but how do we map this thing?

shout2 :: String -> String -> String
shout2 x y = (toUpper x) ++ " " ++ (toUpper y)

-- shout2 "hello" "world" === "HELLO WORLD"

shout2Maybe :: Maybe String -> Maybe String -> Maybe String
shout2Maybe = ???

THE UGLY WAY

Seems like a lot of trouble just to use shout2
shout3Maybe, shout100Maybe, …?

shout2Maybe :: Maybe String -> Maybe String -> Maybe String
shout2Maybe Nothing _ = Nothing
shout2Maybe _ Nothing = Nothing
shout2Maybe (Just x) (Just y) = Just (shout2 x y)

AN INITIAL TRY
We know Maybe is a Functor, so let’s try fmap
We can map over the �rst argument, but then stuck:

Apply “Maybe (String -> String)” to “Maybe String”?

shout2Maybe :: Maybe String -> Maybe String -> Maybe String
shout2Maybe mx my = let shoutFirst = fmap shout2 mx in
 -- shoutFirst :: Maybe (String -> String)
 -- ... now what?

SOLUTION: APPLICATIVE
We can solve this problem by extending Functor

class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b -- read: "app"

LET’S DEFINE FOR MAYBE
As always: follow the types…

instance Applicative Maybe where
 -- pure :: a -> Maybe a
 pure x = Just x

 -- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b
 Nothing <*> _ = Nothing
 _ <*> Nothing = Nothing
 (Just f) <*> (Just x) = Just (f x)

REVISITING SHOUT…
Now: we can de�ne shout2Maybe

Cleaning things up a bit more…

shout2Maybe :: Maybe String -> Maybe String -> Maybe String
shout2Maybe mx my = let shoutFirst = fmap shout2 mx in
 shoutFirst <*> my

shout2Maybe mx my = shout2 <$> mx <*> my
-- associates left: (shout2 <$> mx) <*> my

APPLICATIVE LAWS
Laws are more complicated (don’t memorize)

-- 1. identity
pure id <*> v === v

-- 2. homomorphism
pure f <*> pure x === pure (f x)

-- 3. interchange
u <*> pure y === pure ($ y) <*> u

-- 4. composition
pure (.) <*> u <*> v <*> w === u <*> (v <*> w)

EXAMPLE: LISTS
Let’s write an applicative instance for list
Follow the types…

Apply each function to every element, then collect

instance Applicative ([]) where
 -- pure :: a -> [a]
 pure x = [x]

 -- (<*>) :: [a -> b] -> [a] -> [b]
 [] <*> _ = []
 (f:fs) <*> xs = fmap f xs ++ fs <*> xs

 -- associates: (fmap f xs) ++ (fs <*> xs)

ANOTHER WAY: LISTS
There’s another, less obvious instance…

Apply each function to one element
Relies on Haskell’s lazy evaluation…

instance Applicative ([]) where
 -- pure :: a -> [a]
 pure x = x : pure x -- infinite list of x

 -- (<*>) :: [a -> b] -> [a] -> [b]
 fs <*> xs = zipWith ($) fs xs

WHAT IS PARSING?

TURN UNSTRUCTURED DATA INTO
STRUCTURED DATA

Data is stored and transmitted as plain text
Structure indicated by special characters

Line breaks and whitespace
Commas and other punctuation
Parentheses, matching open/close tags

For programs to use this data, need to convert from
“list of characters” to something more structured

EXAMPLES EVERYWHERE
Compilation

Source code transformed to AST and compiled
Compression

Files converted to and from compressed form
Networking

HTTP headers, data feeds, API requests, …
Logging

System monitoring, error logs, …

PARSING IS ANNOYING
Theoretically well-studied, many algorithms

LL, LR, Earley, CYK, shift-reduce, Packrat, …
Writing parsers is tedious, often use parser generators

Write grammar in a special language, get a parser
ANTLR, Bison, Yacc, …

Parser language drawbacks
Complex and hard to read: error prone!
Not a full-featured language

BUILDING A PARSER IN
HASKELL

PLAN FOR NEXT FEW DAYS
Build a small library for parsers in Haskell
Good example of a domain-speci�c language (DSL)

Small, special-purpose language
Strength of Haskell and FP

HW3: Extend parser with more features

MAIN PARSER TYPE
Goal: parse a string into a type a
We call (a, String) a parse (result)

First component: output of parser
Second component: rest of string ("" is done)

Parser: function from string to Maybe parse

data Parser a = MkParser (String -> Maybe (a, String))

RUNNING THE PARSER
1. Plug in the input string and run function

runParser :: Parser a -> String -> Maybe (a, String)
runParser (MkParser parseFn) input = parseFn input

RUNNING THE PARSER
2. Filter out parses that don’t consume whole string

getParse :: Parser a -> String -> Maybe a
getParse parser input = case runParser parser input of
 Nothing -> Nothing -- Parser couldn't parse anything
 Just (val, "") -> Just val -- Got result, finished string
 Just _ -> Nothing -- Got result, but leftover string

DESIGN PHILOSOPHY
1. First: tiny, building-block parsers

Will seem really limited, almost boring
2. Next: basic ways to combine parsers

Choice, sequencing, …
3. Then: complex ways to combine parsers

Repetition, separation, …

Build big parsers out of simpler parsers!

SOME SIMPLE PARSERS
Empty string: don’t consume any input

Parse one of any character

emptyP :: Parser String
emptyP = MkParser $ \str -> Just ("", str)

itemP :: Parser Char
itemP = MkParser $ \str ->
 case str of
 [] -> Nothing
 (c:cs) -> Just (c, cs)

MORE SIMPLE PARSERS
Parse one of some kind of character

charSatP :: (Char -> Bool) -> Parser Char
charSatP predicate = MkParser $ \str ->
 case str of
 [] -> Nothing
 (c:cs) -> if predicate c then Just (c, cs) else Nothing

spaceP :: Parser Char
spaceP = charSatP isSpace

digitP :: Parser Char
digitP = charSatP isDigit

charP :: Char -> Parser Char
charP c = charSatP (== c)

APPLICATIVE PARSING

THE STORY SO FAR
Parser: input String to parsed value, rest of String
We have: basic parsers (one char, digit, space, …)
Needed: parser transformers

Take parser, change/process “parsed value”
Needed: parser combinators

Combine parsers into larger parsers

PARSER TRANSFORMERS
Wanted: function with the following type

Looks familiar? Let’s de�ne a Functor instance:

trans :: (a -> b) -> Parser a -> Parser b

instance Functor Parser where
 -- fmap :: (a -> b) -> Parser a -> Parser b
 fmap f par = MkParser $ \str ->
 case runParser par str of
 Nothing -> Nothing
 Just (val, str') -> Just (f val, str')

PARSER COMBINATORS: APPLICATIVE
Applicative will let us combine multiple parsers:

Kind of sequencing: feed str' to second parser

instance Applicative Parser where
 -- pure :: a -> Parser a
 pure x = MkParser $ \str -> Just (x, str)

 -- (<*>) :: Parser (a -> b) -> Parser a -> Parser b
 parF <*> parA = MkParser $ \str ->
 case runParser parF str of -- run first
 Nothing -> Nothing -- first failed
 Just (f, str') -> -- first OK
 case runParser parA str' of -- run second
 Nothing -> Nothing -- second failed
 Just (v, str'') -> Just (f v, str'') -- second OK

