LECTURE 08

Theory and Design of PL (CS 538)
February 27,2020

HW1GRADING

e Grading is in progress, back in a few days
e Style definitely matters

= Don't repeat yourself

= Don't use a ton of nested ifs

= |[f you're not sure, hlint/ask us
e No points off for style this time

= May deduct style points starting HW?2

Read our comments on your HW!

LAST TIME: TYPECLASSES

1. Declare class with required functions
2. Implement class for your type
3. Fns can use typeclass constraints

EXAMPLE: ORD

class Eg a => Ord a where

(<)
data Nat =
instance
/ero <
succ <
/ero <
succ n <
sort :: Ord

sort list

—-> a

/ero |

-> Bool
more Ssturft

succ Nat

Ord Nat where

more SsSturft

ASEge
/ero
Succ
SUCC m

a =>

[a]

False
F'alse
True

n < m

-> [a]

A PEER UNDER THE
h00D

ENCODE TYPECLASS INFO

e Given class declaration...

class Ord a where
(<) :: a —> a —-> Bool
(<=) :: a —-> a —-> Bool

e Compiler makes dictionary type...

data OrdDict a = MkOrdDict { (K) :: a -> a —-> Bool
, (<=) :: a -> a -> Bool }

ENCODE INSTANCE INFO

e Given instance declaration for type...

instance Ord Nat where

n < n' = natlLessThan n n'
n <= n' = natLegThan n n'
e Compiler makes dictionary...
NatOrdDict :: OrdDict Nat

NatOrdDict = MkOrdDict { (natLessThan

)
(<=

<
<

) natLegThan }

THREAD THE DICTIONARY

e Say we have function to find the bigger tuple element

max :: Ord a => -> a —-> a

Q

max X y
| x < v
| otherwise

Il
X

e Compiler replaces constraint with dictionary
e Gets method instances from the dictionary

max' :: OrdDict a -> a -> a —-> a
max' dict x vy
| ((<) dict) x vy
| otherwise

Y
X

ADJUST FUNCTION CALLS

e Say we call the max function

bigger = max Zero (Succ Zero)

e Compiler adds in the dictionary for Nat

bigger = max' NatOrdDict Zero (Succ Zero)

e Voila! No more typeclasses, just plain functions

MAX ON OTHER TYPES

e Say we call themax functionon Char

bigger = max 'a' 'b'

e Compiler adds in the dictionary for Char

bigger = max' CharOrdDict 'a' 'b'

TODAY: FUNCTOR

GOING UP A LEVEL

e So far: typeclass instances for types

e Many things in Haskell are not types:
B Mavbe
=[]

e They need a type argument to become a type:
" Maybe Int

B [Tnt]

Define typeclasses for these things!

MAPPABLE

e We can map over many things: Mavybe, lists, trees, ...
e Factor this into a type class:

class Functor f where
fmap :: (a -=> b) -> £ a -> £ Db

e Think: acontainer £ is “mappable” if it hasa fmap
= Note: £ doesn’t always need to be a “container”

EXAMPLES OF FUNCTOR

WARMUP: LISTS

e We already know a mapping function for lists:

instance Functor ([]) where
fmap = map
—-— infix: foo <$> bar === fmap foo bar

—— What's the type?
-— fmap :: (a —-> b) —-> [a] —> [Db]

MAYBE

e \Would like to map over a Maybe:

instance Functor Maybe where
fmap £ Nothing = Nothing
fmap £ (Just x) = Just (f x)

—— What's the type?
—-— fmap :: (a —-> b) —-> Maybe a -> Maybe b

"READER”

 Previous examples: containers
e This example: type of “reader” functions
= Conversions from type r to something else

instance Functor ((=->) 1)
—— What's the heck 1s this type??
-— fmap :: (a -> b) -> ((->) r a) -> ((->) r b)
-— fmap :: (a -> b) -> (r -> a) -> (r -> b)

—— Solution 1s now clear:

fmap fab fra = \r -> fab (fra r)

FUNCTOR LAWS

A BROKEN FMAP

instance Functor Maybe where
fmap £ Nothing = Nothing
fmap £ (Just x) = Nothing

—— What's the type?
-— fmap :: (a -> b) —-> Maybe a —-> Maybe b

e Typeis OK, but it doesn't seemto “map”...

FOLLOW TRE LAWS

e Many Haskell typeclasses come with “laws”
= Expected equations that should hold

e You should check the laws hold
= Compiler won’t check these laws for you
= Breaking laws is almost always a bug

FUNCTOR LAW: IDENTITY

—— Identity function 1d
-— 1d :: -

fmap 1d === 1id

e Mapping a do-nothing function should do nothing

A BROKEN FMAP

instance Functor Maybe where
fmap £ Nothing = Nothing
fmap £ (Just x)

Nothing

—— What's the type?
-— fmap :: (a —-> b) -> Maybe a -> Maybe b

e Breakslaw: fmap id (Just 42) Nothing

FUNCTOR LAW: COMPOSITION

-— Suppose: £ :: a -> b, g :: b ->
fmap (g . f£) === fmap g . fmap £

e Map fthenmapgissameasmapg . £

