
LECTURE 08
Theory and Design of PL (CS 538)

February 27, 2020

NEWS

HW1 GRADING
Grading is in progress, back in a few days
Style de�nitely matters

Don’t repeat yourself
Don’t use a ton of nested ifs
If you’re not sure, hlint/ask us

No points off for style this time
May deduct style points starting HW2

Read our comments on your HW!

LAST TIME: TYPECLASSES
1. Declare class with required functions
2. Implement class for your type
3. Fns can use typeclass constraints

EXAMPLE: ORD
class Eq a => Ord a where
 (<) :: a -> a -> Bool
 -- ... more stuff ...

data Nat = Zero | Succ Nat

instance Ord Nat where
 Zero < Zero = False
 Succ _ < Zero = False
 Zero < Succ _ = True
 Succ n < Succ m = n < m
 -- ... more stuff

sort :: Ord a => [a] -> [a]
sort list = -- ... < ...

A PEEK UNDER THE
HOOD

ENCODE TYPECLASS INFO
Given class declaration…

Compiler makes dictionary type…

class Ord a where
 (<) :: a -> a -> Bool
 (<=) :: a -> a -> Bool

data OrdDict a = MkOrdDict { (<) :: a -> a -> Bool
 , (<=) :: a -> a -> Bool }

ENCODE INSTANCE INFO
Given instance declaration for type…

Compiler makes dictionary…

instance Ord Nat where
 n < n' = natLessThan n n'
 n <= n' = natLeqThan n n'

NatOrdDict :: OrdDict Nat
NatOrdDict = MkOrdDict { (<) = natLessThan
 , (<=) = natLeqThan }

THREAD THE DICTIONARY
Say we have function to �nd the bigger tuple element

Compiler replaces constraint with dictionary
Gets method instances from the dictionary

max :: Ord a => a -> a -> a
max x y
 | x < y = y
 | otherwise = x

max' :: OrdDict a -> a -> a -> a
max' dict x y
 | ((<) dict) x y = y
 | otherwise = x

ADJUST FUNCTION CALLS
Say we call the max function

Compiler adds in the dictionary for Nat

Voilà! No more typeclasses, just plain functions

bigger = max Zero (Succ Zero)

bigger = max' NatOrdDict Zero (Succ Zero)

MAX ON OTHER TYPES
Say we call the max function on Char

Compiler adds in the dictionary for Char

bigger = max 'a' 'b'

bigger = max' CharOrdDict 'a' 'b'

TODAY: FUNCTOR

GOING UP A LEVEL
So far: typeclass instances for types
Many things in Haskell are not types:
Maybe
[]

They need a type argument to become a type:
Maybe Int
[Int]

De�ne typeclasses for these things!

MAPPABLE
We can map over many things: Maybe, lists, trees, …

Factor this into a type class:

Think: a container f is “mappable” if it has a fmap
Note: f doesn’t always need to be a “container”

class Functor f where
 fmap :: (a -> b) -> f a -> f b

EXAMPLES OF FUNCTOR

WARMUP: LISTS
We already know a mapping function for lists:

instance Functor ([]) where
 fmap = map
 -- infix: foo <$> bar === fmap foo bar

 -- What's the type?
 -- fmap :: (a -> b) -> [a] -> [b]

MAYBE
Would like to map over a Maybe:

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Just (f x)

 -- What's the type?
 -- fmap :: (a -> b) -> Maybe a -> Maybe b

“READER”
Previous examples: containers
This example: type of “reader” functions

Conversions from type r to something else

instance Functor ((->) r)
 -- What's the heck is this type??
 -- fmap :: (a -> b) -> ((->) r a) -> ((->) r b)
 -- fmap :: (a -> b) -> (r -> a) -> (r -> b)
 -- Solution is now clear:

 fmap fab fra = \r -> fab (fra r)

FUNCTOR LAWS

A BROKEN FMAP

Type is OK, but it doesn’t seem to “map”…

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Nothing

 -- What's the type?
 -- fmap :: (a -> b) -> Maybe a -> Maybe b

FOLLOW THE LAWS
Many Haskell typeclasses come with “laws”

Expected equations that should hold
You should check the laws hold

Compiler won’t check these laws for you
Breaking laws is almost always a bug

FUNCTOR LAW: IDENTITY

Mapping a do-nothing function should do nothing

-- Identity function id
-- id :: a -> a

fmap id === id

A BROKEN FMAP

Breaks law: fmap id (Just 42) === Nothing

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Nothing

 -- What's the type?
 -- fmap :: (a -> b) -> Maybe a -> Maybe b

FUNCTOR LAW: COMPOSITION

Map f then map g is same as map g . f

-- Suppose: f :: a -> b, g :: b -> c
fmap (g . f) === fmap g . fmap f

