LECTURE 07 Theory and Design of PL (CS 538)

February 12, 2020

MODELING DATATYPES

GENERAL PATTERN

Add a new type
 Add constructor expressions
 Add destructor expressions
 Add typing rules for new expressions
 Add evaluation rules for new expressions

EXAMPLE: PRODUCTS

INTRODUCING PRODUCTS

- Often write just $t_1 \times t_2 \times t_3$
- Given types t_1 and t_2 , product type $t_1 \times t_2$ • Can extend to triples: $t_1 \times (t_2 \times t_3)$, etc.
- Constructor
 - Pairing: from terms e_1 and e_2 , form (e_1, e_2)

DESTRUCTORS: PROJECTIONS

Given a pair term e, can project out terms:
First element: p₁(e)
Second element: p₂(e)

TYPING/EVALUATION RULES

EXAMPLE: SUM TYPES

INTRODUCING SUMS

- Given types t_1 and t_2 , sum type $t_1 + t_2$ • Can extend to triples: $t_1 + (t_2 + t_3)$, etc. • Often write just $t_1 + t_2 + t_3$

- Constructors
 - Left injection: from term e_1 , form $inl(e_1)$ • Right injection: from term e_2 , form $inr(e_2)$

DESTRUCTORS: CASE

• Given a sum term e, add case analysis expression:

 $\text{case}(e) \text{ of } \text{inl}(x_1) \rightarrow e_1 \mid \text{inr}(x_2) \rightarrow e_2$

"If e is left option, do e₁. If e is right option, do e₂."
Branch e₁ can use variable x₁, branch e₂ can use x₂

TYPING/EVALUATION RULES

EXAMPLE: LIST TYPES

INTRODUCING LISTS

- Given type t, have type List(t) of lists of t
- Constructors
 - Empty: (from nothing) form expression Nil

Cons: from term e and tail e', form Cons(e, e')

CONSUMING LISTS

• Very much like sums • Given a list term e, add case analysis expression:

$case(e) \text{ of } Nil \rightarrow e_1 \mid Cons(x, xs) \rightarrow e_2$

• "If e is empty, do e_1 . If e is not empty, do e_2 ." • Branch e₂ can use variables x and xs

TYPING/EVALUATION RULES

PARAMETRIC. FUNCTIONS

"FOR ALL" PARAMETERS

• We've already seen: types have type variables:

fst :: (a, b) -> a Cons :: a -> [a] -> [a]

• These must work for all types a • Concrete type inferred automatically when calling:

fst (1, True) :: Int -- type param a is Int Cons True [] :: List Bool -- type param a is Bool

MUST BEHAVE UNIFORMLY

- Function behavior can't depend on particular type!
 No "peeking" at what type a is
 Not allowed: if a is Bool then ... if a is Int then ...
- Also called *polymorphism* in type theory
 Note: *not* the same as OO "polymorphism"

WHY IS THIS GOOD?

- Polymorphism constrains what a function can do
- More constraints:
 - More annoying
 - Fewer wrong implementations
- Sometimes, only one function is possible

FREE THEOREMS

• What does our mystery function do?

mystery1 :: a -> a

• Polymorphism: must work the same way for all a • Can prove: it can only be the identity function Ignoring non-termination...)

mysteryl x = x

FREE THEOREMS

What does our mystery function do?

mystery2 :: $(a, a) \rightarrow a$

• Can prove: either always returns first, or second

mystery2 (x, y) = x - Possibility 1mystery2 (x, y) = y -- Possibility 2

FREE THEOREMS

• What does our mystery function do?

mystery3 :: List a -> Maybe a

• If output is Just x, then x must be in input list Index can only depend on the length of the list

x1 = mystery3 [1, 2]x2 = mystery3 ['a', 'b'] -- (x1, x2) is either: (Nothing, Nothing), (Just 1, Just 'a'), (Just 2, Just 'b')

SOMETIMES: TOO LIMITING

WHAT TYPES?

- To string
 - toString :: a -> String
- Equality
 - \blacksquare (==) :: a -> a -> Bool
- Ordering
 - (<) :: a -> a -> Bool
- These polymorphic functions must ignore input(s)!

"AD HOC" POLYMORPHISM

- Same function name, works on different types
- Behavior can depend on the concrete type
- Can't work on *all* types, but we should be able to easily extend function to handle new types

s on different types e concrete type we should be able to andle new types

HASKELL'S SOLUTION: TYPECLASSES

DECLARING A TYPECLASS

- Give list of associated operations (methods)
- Example: Equality typeclass:

class Eq a where (==) :: a -> a -> Bool (/=) :: a -> a -> Bool x == y = not (x /= y)x /= y = not (x == y)

> Last two lines are default implementations • Defining either == or /= is enough

SUBCLASSING

• Some typeclasses require other typeclasses • Example: Ordered type needs a notion of equality

Eq	a =	=> (Orc	ala	where
•••	a	->	а	->	Bool
•••	a	->	а	->	Bool
•••	a	->	а	->	Bool
•••	a	->	a	->	Bool
	Eq :: ::	Eq a = : a : a : a : a	Eq a => (:: a -> :: a -> :: a -> :: a ->	Eq a => Ord :: a -> a :: a -> a :: a -> a :: a -> a	Eq a => Ord a :: a -> a -> :: a -> a -> :: a -> a -> :: a -> a ->

• Any type satisfying Ord needs to satisfy Eq • Can require multiple parent typeclasses

TYPECLASS "CONSTRAINT"

- Functions can require type variables to be instances • Add a "constraint" before the type signature

-- Can be applied as long as type `a` is an instance of `Eq a` elem :: Eq a => a -> [a] -> Bool elem x [] = False elem x (y:ys) = (x == y) || elem x ys

-- `(==)` function from `Eq` typeclass

• Define functions at the right level of generality!

A TOUR OF TYPECLASSES

Show: can be converted to a string

class Show a where
 show :: a -> String

• Read: can be converted from a string

-- Main useful function: readMaybe :: Read a => String -> Maybe a

ENUM AND BOUNDED

• Enum: can be enumerated

class	Enum	а	whe	ere		
toEr	num	• •	Ir	nt ·	->	a
fron	nEnum	: :	a	->	Ir	nt

Bounded: has max and min element

class Bounded a where
 minBound :: a
 maxBound :: a

NUMERIC TYPECLASSES

• Most general is Num: things generalizing integers

class	(Eq a	, Sł	JOW	a)	=>]	Num	a	where
(+)	:: a	-> a	a —>	> a				
(—)	:: a	-> a	a ->	> a				
(*)	:: a	-> a	a —>	> a				
abs	:: a	-> a	A					
nega	te ::	a -	-> a	a				
sign	um ::	a -	-> a	a				
from	Integ	er	-	Inte	eger	->	a	

More specific typeclasses: Integral, Floating
Numeric hierarchy for number-like things

e

absolute value negation sign: +1 or -1

MONOID

• Monoid is a type with: A binary operation An identity for the operation • Think: lists, with list append and empty list

class	Monc	oid	a	whe	ere	9		
memp	oty	::	a					 identi
mapp	pend	•••	a	->	a	->	a	 binary

Lots more in Haskell's algebraic hierarchy

ty element operation

MAKING NEW TYPECLASS INSTANCES

DIRECT METHOD

- Provide concrete definitions for typeclass operations
- Supply enough for minimally complete definition
- Undefined things given default implementations

```
data Nat = Zero | Succ Nat
instance Ord Nat where
Zero < Zero = False
Succ < Zero = False
Zero < Succ = True
Succ n < Succ m = n < m</pre>
```

ns for typeclass operations ly complete definition ault implementations

REQUIRE OTHER INSTANCES

• Often: defining instances for parametrized types • Need to require type variables satisfy some instance

-- Custom type of pairs **data** MyPair a = MkPair a a

instance Show a => Show MyPair a **where** show (MkPair x x') = "MyPair of " ++ (show x)

instance Ord a => Ord MyPair a where (MkPair x x') < (MkPair y y') = (x < y) || (x == y & x' < y')

++ " and " ++ (show x')

AUTOMATIC METHOD

• Often: typeclass instances are boring ("boilerplate") Usually clear how to define Eq typeclass, ...

Have compiler derive default instances for you

data Nat = Zero | Succ Nat **deriving** (Eq) **data** Colors = Red | Green | Blue **deriving** (Enum, Eq, Show)