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MODELING DATATYPES



GENERAL PATTERN
1. Add a new type
2. Add constructor expressions
3. Add destructor expressions
4. Add typing rules for new expressions
5. Add evaluation rules for new expressions



EXAMPLE: PRODUCTS



INTRODUCING PRODUCTS
Given types  and , product type 

Can extend to triples: , etc.

Often write just 
Constructor

Pairing: from terms  and , form 

t1 t2 t ×1 t2
t ×1 (t ×2 t )3

t ×1 t ×2 t3

e1 e2 (e , e )1 2



DESTRUCTORS: PROJECTIONS
Given a pair term , can project out terms:

First element: 

Second element: 

e
p (e)1

p (e)2



TYPING/EVALUATION RULES



EXAMPLE: SUM TYPES



INTRODUCING SUMS
Given types  and , sum type 

Can extend to triples: , etc.

Often write just 
Constructors

Left injection: from term , form 

Right injection: from term , form 

t1 t2 t +1 t2
t +1 (t +2 t )3

t +1 t +2 t3

e1 inl(e )1
e2 inr(e )2



DESTRUCTORS: CASE
Given a sum term , add case analysis expression:

“If  is left option, do . If  is right option, do .”

Branch  can use variable , branch  can use 

e

case(e) of inl(x ) →1 e ∣1 inr(x ) →2 e2

e e1 e e2
e1 x1 e2 x2



TYPING/EVALUATION RULES



EXAMPLE: LIST TYPES



INTRODUCING LISTS
Given type , have type  of lists of 
Constructors

Empty: (from nothing) form expression 

Cons: from term  and tail , form 

t List(t) t

Nil
e e′ Cons(e, e )′



CONSUMING LISTS
Very much like sums
Given a list term , add case analysis expression:

“If  is empty, do . If  is not empty, do .”

Branch  can use variables  and 

e

case(e) of Nil → e ∣1 Cons(x, xs) → e2

e e1 e e2
e2 x xs



TYPING/EVALUATION RULES



PARAMETRIC
FUNCTIONS



“FOR ALL” PARAMETERS
We’ve already seen: types have type variables:

These must work for all types a
Concrete type inferred automatically when calling:

fst :: (a, b) -> a
Cons :: a -> [a] -> [a]

fst (1, True) :: Int       -- type param a is Int
Cons True []  :: List Bool -- type param a is Bool



MUST BEHAVE UNIFORMLY
Function behavior can’t depend on particular type!

No “peeking” at what type a is

Not allowed: if a is Bool then … if a is Int then …

Also called polymorphism in type theory
Note: not the same as OO “polymorphism”



WHY IS THIS GOOD?
Polymorphism constrains what a function can do
More constraints:

More annoying
Fewer wrong implementations

Sometimes, only one function is possible



FREE THEOREMS
What does our mystery function do?

Polymorphism: must work the same way for all a
Can prove: it can only be the identity function

(Ignoring non-termination…)

mystery1 :: a -> a

mystery1 x = x



FREE THEOREMS
What does our mystery function do?

Can prove: either always returns �rst, or second

mystery2 :: (a, a) -> a

mystery2 (x, y) = x -- Possibility 1
mystery2 (x, y) = y -- Possibility 2



FREE THEOREMS
What does our mystery function do?

If output is Just x, then x must be in input list

Index can only depend on the length of the list

mystery3 :: List a -> Maybe a

x1 = mystery3 [1, 2]
x2 = mystery3 ['a', 'b']
-- (x1, x2) is either:
-- (Nothing, Nothing), (Just 1, Just 'a'), (Just 2, Just 'b')



SOMETIMES: TOO
LIMITING



WHAT TYPES?
To string
toString :: a -> String

Equality
(==) :: a -> a -> Bool

Ordering
(<) :: a -> a -> Bool

These polymorphic functions must ignore input(s)!



“AD HOC” POLYMORPHISM
Same function name, works on different types
Behavior can depend on the concrete type
Can’t work on all types, but we should be able to
easily extend function to handle new types



HASKELL’S SOLUTION:
TYPECLASSES



DECLARING A TYPECLASS
Give list of associated operations (methods)
Example: Equality typeclass:

Last two lines are default implementations
De�ning either == or /= is enough

class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

  x == y = not (x /= y)
  x /= y = not (x == y)



SUBCLASSING
Some typeclasses require other typeclasses
Example: Ordered type needs a notion of equality

Any type satisfying Ord needs to satisfy Eq
Can require multiple parent typeclasses

class Eq a => Ord a where
  (<)  :: a -> a -> Bool
  (>)  :: a -> a -> Bool
  (<=) :: a -> a -> Bool
  (>=) :: a -> a -> Bool



TYPECLASS “CONSTRAINT”
Functions can require type variables to be instances
Add a “constraint” before the type signature

De�ne functions at the right level of generality!

-- Can be applied as long as type `a` is an instance of `Eq a`
elem :: Eq a => a -> [a] -> Bool
elem x []     = False
elem x (y:ys) = (x == y) || elem x ys

-- `(==)` function from `Eq` typeclass



A TOUR OF
TYPECLASSES



SHOW AND READ
Show: can be converted to a string

Read: can be converted from a string

class Show a where
  show :: a -> String

-- Main useful function:
readMaybe :: Read a => String -> Maybe a



ENUM AND BOUNDED
Enum: can be enumerated

Bounded: has max and min element

class Enum a where
  toEnum   :: Int -> a
  fromEnum :: a -> Int

class Bounded a where
  minBound :: a
  maxBound :: a



NUMERIC TYPECLASSES
Most general is Num: things generalizing integers

More speci�c typeclasses: Integral, Floating
Numeric hierarchy for number-like things

class (Eq a, Show a) => Num a where
  (+) :: a -> a -> a
  (-) :: a -> a -> a
  (*) :: a -> a -> a
  abs :: a -> a                -- absolute value
  negate :: a -> a             -- negation
  signum :: a -> a             -- sign: +1 or -1
  fromInteger :: Integer -> a



MONOID
Monoid is a type with:

A binary operation
An identity for the operation

Think: lists, with list append and empty list

Lots more in Haskell’s algebraic hierarchy

class Monoid a where
  mempty  :: a           -- identity element
  mappend :: a -> a -> a -- binary operation



MAKING NEW
TYPECLASS INSTANCES



DIRECT METHOD
Provide concrete de�nitions for typeclass operations
Supply enough for minimally complete de�nition
Unde�ned things given default implementations

data Nat = Zero | Succ Nat

instance Ord Nat where
  Zero   < Zero   = False
  Succ _ < Zero   = False
  Zero   < Succ _ = True
  Succ n < Succ m = n < m

  Zero   <= _      = True
  Succ _ <= Zero   = False
  Succ n <= Succ m = n <= m



REQUIRE OTHER INSTANCES
Often: de�ning instances for parametrized types
Need to require type variables satisfy some instance

-- Custom type of pairs
data MyPair a = MkPair a a

instance Show a => Show MyPair a where
  show (MkPair x x') = "MyPair of " ++ (show x)
                                    ++ " and " ++ (show x')

instance Ord a => Ord MyPair a where
  (MkPair x x') < (MkPair y y') = (x < y) || (x == y && x' < y')



AUTOMATIC METHOD
Often: typeclass instances are boring (“boilerplate”)

Usually clear how to de�ne Eq typeclass, …

Have compiler derive default instances for you

data Nat = Zero | Succ Nat deriving (Eq)
data Colors = Red | Green | Blue deriving (Enum, Eq, Show)


