
LECTURE 07
Theory and Design of PL (CS 538)

February 12, 2020

MODELING DATATYPES

GENERAL PATTERN
1. Add a new type
2. Add constructor expressions
3. Add destructor expressions
4. Add typing rules for new expressions
5. Add evaluation rules for new expressions

EXAMPLE: PRODUCTS

INTRODUCING PRODUCTS
Given types and , product type

Can extend to triples: , etc.

Often write just
Constructor

Pairing: from terms and , form

t1 t2 t ×1 t2
t ×1 (t ×2 t)3

t ×1 t ×2 t3

e1 e2 (e , e)1 2

DESTRUCTORS: PROJECTIONS
Given a pair term , can project out terms:

First element:

Second element:

e
p (e)1

p (e)2

TYPING/EVALUATION RULES

EXAMPLE: SUM TYPES

INTRODUCING SUMS
Given types and , sum type

Can extend to triples: , etc.

Often write just
Constructors

Left injection: from term , form

Right injection: from term , form

t1 t2 t +1 t2
t +1 (t +2 t)3

t +1 t +2 t3

e1 inl(e)1
e2 inr(e)2

DESTRUCTORS: CASE
Given a sum term , add case analysis expression:

“If is left option, do . If is right option, do .”

Branch can use variable , branch can use

e

case(e) of inl(x) →1 e ∣1 inr(x) →2 e2

e e1 e e2
e1 x1 e2 x2

TYPING/EVALUATION RULES

EXAMPLE: LIST TYPES

INTRODUCING LISTS
Given type , have type of lists of
Constructors

Empty: (from nothing) form expression

Cons: from term and tail , form

t List(t) t

Nil
e e′ Cons(e, e)′

CONSUMING LISTS
Very much like sums
Given a list term , add case analysis expression:

“If is empty, do . If is not empty, do .”

Branch can use variables and

e

case(e) of Nil → e ∣1 Cons(x, xs) → e2

e e1 e e2
e2 x xs

TYPING/EVALUATION RULES

PARAMETRIC
FUNCTIONS

“FOR ALL” PARAMETERS
We’ve already seen: types have type variables:

These must work for all types a
Concrete type inferred automatically when calling:

fst :: (a, b) -> a
Cons :: a -> [a] -> [a]

fst (1, True) :: Int -- type param a is Int
Cons True [] :: List Bool -- type param a is Bool

MUST BEHAVE UNIFORMLY
Function behavior can’t depend on particular type!

No “peeking” at what type a is

Not allowed: if a is Bool then … if a is Int then …

Also called polymorphism in type theory
Note: not the same as OO “polymorphism”

WHY IS THIS GOOD?
Polymorphism constrains what a function can do
More constraints:

More annoying
Fewer wrong implementations

Sometimes, only one function is possible

FREE THEOREMS
What does our mystery function do?

Polymorphism: must work the same way for all a
Can prove: it can only be the identity function

(Ignoring non-termination…)

mystery1 :: a -> a

mystery1 x = x

FREE THEOREMS
What does our mystery function do?

Can prove: either always returns �rst, or second

mystery2 :: (a, a) -> a

mystery2 (x, y) = x -- Possibility 1
mystery2 (x, y) = y -- Possibility 2

FREE THEOREMS
What does our mystery function do?

If output is Just x, then x must be in input list

Index can only depend on the length of the list

mystery3 :: List a -> Maybe a

x1 = mystery3 [1, 2]
x2 = mystery3 ['a', 'b']
-- (x1, x2) is either:
-- (Nothing, Nothing), (Just 1, Just 'a'), (Just 2, Just 'b')

SOMETIMES: TOO
LIMITING

WHAT TYPES?
To string
toString :: a -> String

Equality
(==) :: a -> a -> Bool

Ordering
(<) :: a -> a -> Bool

These polymorphic functions must ignore input(s)!

“AD HOC” POLYMORPHISM
Same function name, works on different types
Behavior can depend on the concrete type
Can’t work on all types, but we should be able to
easily extend function to handle new types

HASKELL’S SOLUTION:
TYPECLASSES

DECLARING A TYPECLASS
Give list of associated operations (methods)
Example: Equality typeclass:

Last two lines are default implementations
De�ning either == or /= is enough

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 x == y = not (x /= y)
 x /= y = not (x == y)

SUBCLASSING
Some typeclasses require other typeclasses
Example: Ordered type needs a notion of equality

Any type satisfying Ord needs to satisfy Eq
Can require multiple parent typeclasses

class Eq a => Ord a where
 (<) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 (>=) :: a -> a -> Bool

TYPECLASS “CONSTRAINT”
Functions can require type variables to be instances
Add a “constraint” before the type signature

De�ne functions at the right level of generality!

-- Can be applied as long as type `a` is an instance of `Eq a`
elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y:ys) = (x == y) || elem x ys

-- `(==)` function from `Eq` typeclass

A TOUR OF
TYPECLASSES

SHOW AND READ
Show: can be converted to a string

Read: can be converted from a string

class Show a where
 show :: a -> String

-- Main useful function:
readMaybe :: Read a => String -> Maybe a

ENUM AND BOUNDED
Enum: can be enumerated

Bounded: has max and min element

class Enum a where
 toEnum :: Int -> a
 fromEnum :: a -> Int

class Bounded a where
 minBound :: a
 maxBound :: a

NUMERIC TYPECLASSES
Most general is Num: things generalizing integers

More speci�c typeclasses: Integral, Floating
Numeric hierarchy for number-like things

class (Eq a, Show a) => Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 (*) :: a -> a -> a
 abs :: a -> a -- absolute value
 negate :: a -> a -- negation
 signum :: a -> a -- sign: +1 or -1
 fromInteger :: Integer -> a

MONOID
Monoid is a type with:

A binary operation
An identity for the operation

Think: lists, with list append and empty list

Lots more in Haskell’s algebraic hierarchy

class Monoid a where
 mempty :: a -- identity element
 mappend :: a -> a -> a -- binary operation

MAKING NEW
TYPECLASS INSTANCES

DIRECT METHOD
Provide concrete de�nitions for typeclass operations
Supply enough for minimally complete de�nition
Unde�ned things given default implementations

data Nat = Zero | Succ Nat

instance Ord Nat where
 Zero < Zero = False
 Succ _ < Zero = False
 Zero < Succ _ = True
 Succ n < Succ m = n < m

 Zero <= _ = True
 Succ _ <= Zero = False
 Succ n <= Succ m = n <= m

REQUIRE OTHER INSTANCES
Often: de�ning instances for parametrized types
Need to require type variables satisfy some instance

-- Custom type of pairs
data MyPair a = MkPair a a

instance Show a => Show MyPair a where
 show (MkPair x x') = "MyPair of " ++ (show x)
 ++ " and " ++ (show x')

instance Ord a => Ord MyPair a where
 (MkPair x x') < (MkPair y y') = (x < y) || (x == y && x' < y')

AUTOMATIC METHOD
Often: typeclass instances are boring (“boilerplate”)

Usually clear how to de�ne Eq typeclass, …

Have compiler derive default instances for you

data Nat = Zero | Succ Nat deriving (Eq)
data Colors = Red | Green | Blue deriving (Enum, Eq, Show)

