LECTURE 0]

Theory and Design of PL (CS 538)
February 12,2020



MODELING DATATYPES




GENERAL PATTERN

1. Add a new type

2. Add constructor expressions

3. Add destructor expressions

4. Add typing rules for new expressions

5. Add evaluation rules for new expressions



EXAMPLE: PRODUCTS



INTRODUCING PRODUCTS

e Giventypes ty and to, product type t1 X t9
o Canextendtotriples:t; X (tg X t3),etc.

m Oftenwritejustty; X t9 X t3
e Constructor
= Pairing: from terms e; and e, form (eq, €3)



DESTRUCTORS: PROJECTIONS

e Given a pair term e, can project out terms:
= First element: p1(e)
= Second element: po(€)



TYPING/EVALUATION RULES



EXAMPLE: SUM TYPES



INTRODUCING SUMS

e Giventypes t{ and to, sumtypety + to

o Canextendtotriples:t; + (to 4 t3), etc.
s Oftenwrite justt; 4+ to + t3

e Constructors
= Left injection: from term ey, forminl (e )

= Right injection: from term es, form inr(es)



DESTRUCTORS: CASE

e Given asum term e, add case analysis expression:

case(e) of inl(x;) — e | inr(xs) — €5

e “If eis left option,do eq. If eisright option,do ey’
e Branch ey can use variable x1, branch es can use xs



TYPING/EVALUATION RULES



EXAMPLE: LIST TYPES




INTRODUCING LISTS

e Given type t, have type List(t) of lists of t
e Constructors
» Empty: (from nothing) form expression N 1l

= Cons: from term e and tail €/, form Cons(e, €')




CONSUMING LISTS

e Very much like sums
e Given alist term e, add case analysis expression:

case(e) of Nil — e; | Cons(x,xs) — e

e “Ifeisempty, doey.Ifeis notempty,does.”
e Branch e can use variables x and xS



TYPING/EVALUATION RULES



PARAMETRIC
FUNCTIONS




“FOR ALL" PARAMETERS

e We've already seen: types have type variables:

fst :: (a, b) —-> a
Cons :: a —-> [a] -> [a]

e These must work for all types a
e Concrete type inferred automatically when calling:

fst (1, True) :: Int —-— type param a 1s Int
Cons True [] :: List Bool -- type param a 1s Bool



MUST BERAVE UNIFORMLY

e Function behavior can’t depend on particular type!
= No “peeking” at what type a is

m Not allowed: if a is Bool then...if ais Int then. ...

e Also called polymorphism in type theory
= Note: not the same as OO “polymorphism”




WHY IS THIS GOOD?

e Polymorphism constrains what a function can do
e More constraints:

= More annoying

= Fewer wrong implementations
e Sometimes, only one function is possible



FREE THEOREMS

e What does our mystery function do?

mysteryl :: a —-> a

e Polymorphism: must work the same way for all a

e Can prove: it can only be the identity function
= (lgnoring non-termination...)

mysteryl x = X



FREE THEOREMS

e What does our mystery function do?

mystervZ2 :: (a, a) —-> a

e Can prove: either always returns first, or second

mystervZ2 (x, V) X —— Possibility 1

mystervZ2 (x, V) y —— Possibility Z2



FREE THEOREMS

e What does our mystery function do?

mystery3 :: List a —-> Maybe a

e [foutputis Just x,then x mustbe ininput list
e Index can only depend on the length of the list

x1 mystery3 [1, 2]

X2 mystery3 ['a', 'b']

-- (x1, x2) 1s eilther:

-— (Nothing, Nothing), (Just 1, Just 'a'), (Just 2, Just 'b')



SOMETIMES: TOO
LIMITING



WHAT TYPES?

e Tostring

B toString :: a —-> String
e Equality

B (==) :: a —-> a —-> Boo.
e Ordering

B (<) :: a —-> a -> Bool

e These polymorphic functions must ignore input(s)'



“AD HOC™ POLYMORPRISM

e Same function name, works on different types

e Behavior can depend on the concrete type

e Can't work onall types, but we should be able to
easily extend function to handle new types



HASKELL'S SOLUTION:
TYPECLASSES




DECLARING A TYPECLASS

e Give list of associated operations (methods)
e Example: Equality typeclass:

(x /= v)

= not
= not (x == vy)

e Last two lines are default implementations
m Defining either == or /=1s enough



SUBCLASSING

e Some typeclasses require other typeclasses
e Example: Ordered type needs a notion of equality

class Eqg a => Ord a where

(<) :: a -> a -> Bool
(>) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>=) :: a —-—> a -> Bool

e Any type satisfying Ord needs to satisfy Eqg
e Canrequire multiple parent typeclasses



TYPEGLASS “CONSTRAINT"

e Functions can require type variables to be instances
e Add a“constraint” before the type signature

-— Can be applied as long as type a 1s an instance of Eqg a

elem :: Eqg a => a -> [a] —-> Bool
elem x [] = False
elem x (y:ys) = (x == vy) || elem x ys

-— ' (==)° function from "Eg  typeclass

e Define functions at the right level of generality!



A TOUR O
TYPECLASSES




SHOW AND READ

e Show: can be converted to a string

class Show a where
show :: a —-> String

e Read: can be converted from a string

—— Main useful function:
readMaybe :: Read a => String -> Maybe a



ENUM AND BOUNDED

e Fnum: can be enumerated

class Enum a where
ToEnum :: Int —> a
fromEnum :: a —-> Int

e Bounded: has max and min element

class Bounded a where
minBound :: a
maxBound :: a



NUMERIC TYPECLASSES

e Most general is Num: things generalizing integers

class (Eg a, Show a) => Num a where

(+) :: a —> a —> a

(=) :: a —> a —> a

(*) :: a -> a —> a

abs :: a —-> a -— absolute value
negate :: a —-> a —— negation
signum :: a —-> a -— sign: +1 or -1
fromInteger :: Integer -> a

e More specific typeclasses: Integral, Floating
e Numeric hierarchy for number-like things



e Monoid is a type with:
= A binary operation
= An identity for the operation
e Think: lists, with list append and empty list

class Monoid a where
mempty :: a —— 1dentity element
mappend :: a -> a -> a ——- binary operation

e L ots more in Haskell's algebraic hierarchy



MARING NEW
TYPECLASS INSTANCES




DIRECT METHOD

e Provide concrete definitions for typeclass operations
e Supply enough for minimally complete definition
e Undefined things given default implementations

data Nat = Zero | Succ Nat

instance Ord Nat where

/€Yo < Zero = False
succ < Zero = False
/ero < Succ = True
Succ n < Succ m = n < m
Zero <= = True
Succ <= Zero = False
Succ n <= Succ m = n <= m



REQUIRE OTHER INSTANCES

e Often: defining instances for parametrized types
e Need to require type variables satisfy some instance

-— Custom type of pairs
data MyPair a = MkPair a a

instance Show a => Show MyPair a where
show (MkPair x x') = "MyPair of " ++ (show x)
++ " and " ++ (show x'")

instance Ord a => Ord MyPair a where
(MkPair x x') < (MkPair v v') = (x < vy) || (x == vy && x' < y")



AUTOMATIC METHOD

o Often: typeclass instances are boring (“boilerplate”)
m Usually clear how to define Eg typeclass, ...

e Have compiler derive default instances for you

data Nat = Zero | Succ Nat deriving (EQ)
data Colors = Red | Green | Blue deriving (Enum, Eg, Show)



