LECTURE 06

Theory and Design of PL (CS 538)
February 10, 2020

HW1 WRAPUP

e Writing a puzzle solver
= Manipulate lists
= Write some recursive functions
= Use higher-order functions
e Bigger picture
= Decompose problem into small functions
= Start with simple version, optimize

HW1: COMMENTS/QUESTIONS?

HW2 QUT AFTER CLASS

e Programming: purely functional data structures
e Written: types and type systems
e Due two weeks from now. Start early!

MORE PATTERN
MATCRING

TARING DATA APART

e Does two things simultaneously
1. Does a case analysis (e.g., empty list or not?)
2. Introduces new variables referring to parts of data
e Haskell defines patterns, which we can match against
m Pattern: 42, 'a', [], (x:xs8), (x, V)

m Not pattern: i < 0,b == False
e Function definitions, let-bindings, where-clauses,...

MORE EXAMPLES

e Haskell patterns are surprisingly flexible

foo :: (Bool, (Int, String)) -> String

foo (b, (1, ¢)) = ... b ... 1 ... C ...

—— SAME AS:

-— foo p = ... (fst p) ... (fst . snd $ p) ... (snd . snd $ p)
bar :: (Int, String) -> String

bar (1, str) = str ++ " onel!l"

bar (2, str) = str ++ " two!"

bar (, str) = str ++ " something!"

—— BUIT NOIT:

-— baz :: Int —-> String

-— baz (1 < 0) = ...

CASE EXPRESSIONS

e Pattern match in other places with case expression

—— General form

case expression of patternl -> expressionl'
pattern?2 -> expression?2'
pattern3 -> expression3'

—— Can put cases on following line, but must align starts

—-— Example
foo :: [a] —-> String
foo list = "Got an: " ++ (case list of
[] -> "empty"
(x:xs) -> "nonempty") ++ " list!"

ASIDE: INDENTATION

Code that is part of some expression
should be indented further in than the
beginning of that expression, even If the
expression is not the first element of line.

e Grouped expressions must be aligned exactly
e Let-bindings, where-clauses, case, guards, ...
e Canignore indentation if using ; and {

e See more examples here

https://en.wikibooks.org/wiki/Haskell/Indentation

SPECIFYING WELL-
BEHAVED PROGRAMS

WHAT DO WE WANT?

e A condition that can be checked statically
m Verify correctness without running program
e Rule out classes of buggy programs
= Prevent as many bugs as possible
e Condition should be compositional
m Check on subprograms to check larger program
= Necessary for checking big programs

GRAMMAR 1S NOT ENOUGH

e Question: Should the following syntax be valid?

(foo 0) + 1

e No? (foo 0) Isnot anumeric expression

= But want to be able to sum up two applications!
e Yes? Suppose grammar lets us sum up expressions
m But thenwhattodo iIf foo returns a boolean?

TYPE SYSTEMS

BRIEF RISTORY

e From type theory by Bertrand Russell (1900s)
= Trying to fix paradoxes in foundations of math
m “|s there a set containing all sets?”

e Simple type theory developed by Carnap, Ramsey,
Quine, Tarski (1920-1930s)
= This will be our focus

e Many fancier type theories developed later
= \We mostly won't talk about them

TYPES CLASSIFY PROGRAMS

e Simple idea: each program e has a type t

e Types describe what kind of program e is

e Some programs do not have a type
e All programs have at most one type

BASE TYPES

For our purposes: booleans and integers

base-ty = "bool" | "int"

FUNCTION TYPES

e Each function goes from input type to output type
e Note: input and output can themselves be functions!

ty = base-ty | ty "->" ty

e This is the full grammar of simple types. Examples:
m true hastypebool

m 42 hastype int
" plusOne = Ax. x + lhastypeint -> int

TYPING CONTEXT

e Will need to type open terms with free variables
= Type depends on types of free variables

e Track these types in a typing context GG
= Bindings: (X : t) means variable x has type t

= A typing context (5 is a list of bindings
e Examples:

= Empty context: G = -

= Two bindings: G = x : bool, y : int

TYPING JUDGMENT

e Putting it all together:

GrFe:t

e Read: program e has type t in context G
» Boolean constants: — true : bool
» Openterms:x : int - x + 1 : 1nt

HOW DO WE ASSIGN
TYPES?

TYPES OF PROGRAMS FROM TYPES OF
SUBPROGRAMS

e We have a set of typing rules, with form:
= |[f: subprograms each have certain types
= Then: whole program has some type
e Type of program doesn't depend on surroundings!

EXAMPLE

PROPERTIES OF TYPE
SYSTEMS

BROKEN PROGRAMS

e “Well-typed programs should not go wrong”
e Many different choices for what “go wrong” means
e Simplest: a program “goes wrong” if it gets stuck
m Bug: program that hasn't finished but can’t step
s Example: program true + 1 1sstuck

TYPE SAFETY

e Main soundness property of type systems
e [f program e has type t, then it never gets stuck

e Well-typed programs can't have this kind of bug!
e Typically proved via progress and preservation

PROGRESS PROPERTY

e [f aclosed program e is well-typed, then either:
= |tis avalue v (finished computing successfully)

= |t can step to some other program: e — ¢’
e [t can't be stuck!

PRESERVATION PROPERTY

e Type should be preserved as a program steps
= If: aclosed program e has type t and it steps to e’

» Then: €' is aclosed program with type t
e Well-typed term can only step to well-typed term

LIMITATIONS OF TYPE
SYSTEMS

WELL-TYPED PROGRAMS CAN HAVE BUGS

e Plenty of ways to write buggy well-typed programs
e For example: this program has type int — 1nt

plusOne = AX. X + 2

e Probably not what we wanted, though. Oops!

SOME CORRECT PROGRAMS ARE NOT WELL-
TYPED

e This program not well-typed, but doesn’t get stuck:

(Lf true then 0 else false) + 1

e “Type systems are sound but not complete”

e “Type systems are a conservative analysis”

e From complexity theory, this is not surprising!
e Usually soundness or completeness, not both

TERMINATION

e A well-typed program in our system could loop

e Soundness just guarantees that program can step,
doesn’t guarantee it will ever finish

e Fancier type systems can guarantee termination

