
LECTURE 06
Theory and Design of PL (CS 538)

February 10, 2020

NEWS

HW1 WRAPUP
Writing a puzzle solver

Manipulate lists
Write some recursive functions
Use higher-order functions

Bigger picture
Decompose problem into small functions
Start with simple version, optimize

HW1: COMMENTS/QUESTIONS?

HW2 OUT AFTER CLASS
Programming: purely functional data structures
Written: types and type systems
Due two weeks from now. Start early!

MORE PATTERN
MATCHING

TAKING DATA APART
Does two things simultaneously
1. Does a case analysis (e.g., empty list or not?)
2. Introduces new variables referring to parts of data
Haskell de�nes patterns, which we can match against

Pattern: 42, 'a', [], (x:xs), (x, y)
Not pattern: i < 0, b == False

Function de�nitions, let-bindings, where-clauses,…

MORE EXAMPLES
Haskell patterns are surprisingly �exible

foo :: (Bool, (Int, String)) -> String
foo (b, (i, c)) = ... b ... i ... c ...

-- SAME AS:
-- foo p = ... (fst p) ... (fst . snd $ p) ... (snd . snd $ p)

bar :: (Int, String) -> String
bar (1, str) = str ++ " one!"
bar (2, str) = str ++ " two!"
bar (_, str) = str ++ " something!"

-- BUT NOT:
-- baz :: Int -> String
-- baz (i < 0) = ...

CASE EXPRESSIONS
Pattern match in other places with case expression

-- General form
case expression of pattern1 -> expression1'
 pattern2 -> expression2'
 pattern3 -> expression3'
 ...
-- Can put cases on following line, but must align starts

-- Example
foo :: [a] -> String
foo list = "Got an: " ++ (case list of
 [] -> "empty"
 (x:xs) -> "nonempty") ++ " list!"

ASIDE: INDENTATION

Grouped expressions must be aligned exactly
Let-bindings, where-clauses, case, guards, …
Can ignore indentation if using ; and { ... }
See more examples

Code that is part of some expression
should be indented further in than the

beginning of that expression, even if the
expression is not the �rst element of line.

here

https://en.wikibooks.org/wiki/Haskell/Indentation

SPECIFYING WELL-
BEHAVED PROGRAMS

WHAT DO WE WANT?
A condition that can be checked statically

Verify correctness without running program
Rule out classes of buggy programs

Prevent as many bugs as possible
Condition should be compositional

Check on subprograms to check larger program
Necessary for checking big programs

GRAMMAR IS NOT ENOUGH
Question: Should the following syntax be valid?

No? (foo 0) is not a numeric expression

But want to be able to sum up two applications!
Yes? Suppose grammar lets us sum up expressions

But then what to do if foo returns a boolean?

(foo 0) + 1

TYPE SYSTEMS

BRIEF HISTORY
From type theory by Bertrand Russell (1900s)

Trying to �x paradoxes in foundations of math
“Is there a set containing all sets?”

Simple type theory developed by Carnap, Ramsey,
Quine, Tarski (1920-1930s)

This will be our focus
Many fancier type theories developed later

We mostly won’t talk about them

TYPES CLASSIFY PROGRAMS
Simple idea: each program has a type

Types describe what kind of program is
Some programs do not have a type
All programs have at most one type

e t
e

BASE TYPES
For our purposes: booleans and integers

base-ty = "bool" | "int"

FUNCTION TYPES
Each function goes from input type to output type
Note: input and output can themselves be functions!

This is the full grammar of simple types. Examples:
true has type bool
42 has type int
plusOne = λx. x + 1 has type int -> int

ty = base-ty | ty "->" ty

TYPING CONTEXT
Will need to type open terms with free variables

Type depends on types of free variables
Track these types in a typing context

Bindings: means variable has type

A typing context is a list of bindings
Examples:

Empty context:

Two bindings:

G
(x : t) x t

G

G = ⋅
G = x : bool, y : int

TYPING JUDGMENT
Putting it all together:

Read: program has type in context

Boolean constants:

Open terms:

G ⊢ e : t

e t G
⊢ true : bool

x : int ⊢ x + 1 : int

HOW DO WE ASSIGN
TYPES?

TYPES OF PROGRAMS FROM TYPES OF
SUBPROGRAMS

We have a set of typing rules, with form:
If: subprograms each have certain types
Then: whole program has some type

Type of program doesn’t depend on surroundings!

EXAMPLE

PROPERTIES OF TYPE
SYSTEMS

BROKEN PROGRAMS
“Well-typed programs should not go wrong”
Many different choices for what “go wrong” means
Simplest: a program “goes wrong” if it gets stuck

Bug: program that hasn’t �nished but can’t step
Example: program true + 1 is stuck

TYPE SAFETY
Main soundness property of type systems
If program has type , then it never gets stuck
Well-typed programs can’t have this kind of bug!
Typically proved via progress and preservation

e t

PROGRESS PROPERTY
If a closed program is well-typed, then either:

It is a value (�nished computing successfully)

It can step to some other program:
It can’t be stuck!

e
v

e → e′

PRESERVATION PROPERTY
Type should be preserved as a program steps

If: a closed program has type and it steps to

Then: is a closed program with type
Well-typed term can only step to well-typed term

e t e′

e′ t

LIMITATIONS OF TYPE
SYSTEMS

WELL-TYPED PROGRAMS CAN HAVE BUGS
Plenty of ways to write buggy well-typed programs
For example: this program has type

Probably not what we wanted, though. Oops!

int → int
plusOne = λx. x + 2

SOME CORRECT PROGRAMS ARE NOT WELL-
TYPED

This program not well-typed, but doesn’t get stuck:

“Type systems are sound but not complete”
“Type systems are a conservative analysis”
From complexity theory, this is not surprising!
Usually soundness or completeness, not both

(if true then 0 else false) + 1

TERMINATION
A well-typed program in our system could loop
Soundness just guarantees that program can step,
doesn’t guarantee it will ever �nish
Fancier type systems can guarantee termination

