
LECTURE 05
Theory and Design of PL (CS 538)

February 05, 2020

DEFINING NEW TYPES

WHY USE CUSTOM TYPES?
Better describe what programs should “mean”

Is this integer measuring length, or weight?
Use the compiler to do these basic checks

SANITIZING INPUT
In Haskell: newtype declaration

Suppose: have some way to check strings

newtype CheckedStr = Safe String
newtype UncheckedStr = Unsafe String

checkString :: UncheckedStr -> CheckedStr

SANITIZING INPUT
Compiler makes sure you don’t forget to check!

processSafeStr :: CheckedStr -> Output
processSafeStr = ...

mysteryStr :: UncheckedStr
mysteryStr = ...

processSafeStr (checkString mysteryStr) -- OK
processSafeStr (mysteryStr) -- Compiler complains!

WHY USE CUSTOM TYPES?
Support more richer data

Not just integers, booleans, and functions
Lists, trees, maps, etc.

THREE KEY INGREDIENTS
1. Name of type, and parameters

Simple: char for character

Complex: [a] for list of elements of same type

2. Some way to make things of this type
Package up parts into a data of the new type
Also called constructors

3. Some way to use things of this type
Use data packaged inside things of this type
Also called destructors

EXAMPLE: PRODUCTS

ALSO KNOWN AS TUPLES
Wrap up several pieces of data into one
Just one option: must contain all data

Type variables a and b: can stand for any type

data Pair a b = MkPair a b

(MkPair 1 True) :: Pair Int Bool

USING TUPLES
Given tuple, pattern match to extract data

Note: still need to put the constructor MkPair

fstPair :: Pair a b -> a
fstPair (MkPair x _) = x

sndPair :: Pair a b -> b
sndPair (MkPair _ y) = y

TYPES WITH PARAMETERS
Pair is an example of a parametric type
Any two types a and b give a type Pair a b
Can require parameters to be the same:

data SamePair a = MkSamePair a a

(MkSamePair 1 3) :: SamePair Int
(MkSamePair True False) :: SamePair Bool

-- Not allowed: (MkSamePair 1 False)

FANCIER PRODUCTS: RECORDS
Sometimes we want to work with large tuples:

Very annoying (and error-prone) to work with:

data Person = MkPerson
 String -- Name
 Bool -- Is employed?
 Bool -- Is married?
 Int -- Age
 String -- Address

getName (MkPerson name _ _ _ _) = name
getEmploy (MkPerson _ emp _ _ _) = emp
...

RECORD SYNTAX
Haskell provides record syntax for these tuples

Automatically generates accessor functions:

data Person = MkPerson
 { name :: String -- Name
 , employed :: Bool -- Is employed?
 , married :: Bool -- Is married?
 , age :: Int -- Age
 , address :: String -- Address
 }

name :: Person -> String
employed :: Person -> Bool
...

BUILDING RECORDS
Standard syntax for building a new record:

defaultPerson :: Person
defaultPerson = MkPerson
 { name = "John Doe"
 , employed = True
 , married = False
 , age = 30
 , address = "123 Main Street, Anytown, WI"
 }

USING RECORDS
Standard syntax for updating records:

Can pattern match on selected �elds

-- Keep all fields the same, except for name and address:
defaultPerson' = defaultPerson
 { name = "Jane Doe"
 , address = "456 Main Street, Anytown, WI }

getNameAddress :: Person -> (String, String)
getNameAddress (MkPerson { name = n, address = a }) = (n, a)

EXAMPLE: SUMS

ALSO KNOWN AS ENUMS
Basic idea: choice between different options
Example: a type Color

Can pack additional data with each option:

data Color = Red | Green | Blue

data Time = HoursMinutes Int Int | Minutes Int

BUILDING ENUMS

First label in each option is a data constructor
Two constructors: HoursMinutes and Minutes
Can make a Time in exactly two ways:

HoursMinutes 11 59 :: Time
Minutes 1800 :: Time

data Time = HoursMinutes Int Int | Minutes Int

EXTRACTING DATA
Pattern match: give program to run for each option

Can also match on data inside different options

whatColorBellPepper :: Color -> String
whatColorBellPepper Red = "It is red."
whatColorBellPepper Green = "It is green!"
whatColorBellPepper Blue = "It is blue?"

whatTime :: Time -> String
whatTime (HoursMinutes m h) = (show m) ++ ":" ++ (show h)
whatTime (Minutes m) = (show m) ++ " min. past midnight"

EXAMPLE: MAYBE

BUILDING MAYBES
A Maybe a is either nothing, or an a

To make something of this type, use constructors

data Maybe a = Nothing | Just a

noValue :: Maybe Int
noValue = Nothing

someValue :: Maybe Int
someValue = Just 13

UNWRAPPING MAYBES
Given a maybe, describe how to handle both cases
Compiler complains if Nothing case isn’t handled

printMaybe :: Maybe Int -> String
printMaybe Nothing = "No value here :("
printMaybe (Just x) = "Got a value: " ++ (show x)

USE: OPTIONAL VALUES
Contains an actual value, or nothing (is “null”)
Nothing is usually indicates failure

For instance: lookup function

findIndex :: (a -> Bool) -> [a] -> Maybe Int
-- findIndex p returns (Just index) if element satisfying p
-- findIndex p returns Nothing if no element satisfies p

EXAMPLE: EITHER

BUILDING EITHERS
Either is just a sum with two type parameters:

Use Left or Right to create an Either a b

data Either a b = Left a | Right b

-- Auto-generated: Left :: a -> Either a b
-- Auto-generated: Right :: b -> Either a b

UNWRAPPING EITHERS
Just like for Maybe, do a case analysis:

doubleRight :: Either Int Int -> Int
doubleRight (Left x) = x
doubleRight (Right y) = y + y

USE: ERROR-HANDLING
Either normal value, or an error
Convention

Right is normal case, holds result value
Left is error case, includes error info

safeModulo :: Int -> Int -> Either String Int
safeModulo m n
 | n == 0 = Left "Error: Modulo by zero!"
 | n /= 0 = Right (n `mod` m)

INDUCTIVE DATATYPES

GENERALIZE A BIT
All the types we have seen so far are inductive types
Basic pattern:

Some type parameters (maybe zero)
Some number of constructors
Unwrap values by matching on constructor

Inductive: data may be of the type being de�ned!

NATURAL NUMBERS
Either zero, or one plus another natural number

As always, operate by pattern matching on cases

data Nat = Zero | Succ Nat
-- Succ short for "successor"

addNats :: Nat -> Nat -> Nat

-- 0 + n' = n'
addNats Zero n' = n'

-- (1 + n) + n' = 1 + (n + n')
addNats (Succ n) n' = Succ $ addNats n n'

LISTS
Either empty list, or an element plus another list
Takes a type parameter a: type of list elements

data List a = Nil | Cons a (List a)

maybeHead :: List a -> Maybe a
maybeHead Nil = Nothing
maybeHead (Cons x xs) = Just x

BINARY TREES
Either leaf, or node with data plus two child trees

data Tree a = Leaf | Node a (Tree a) (Tree a)

swap :: Tree a -> Tree a
swap Leaf = Leaf
swap (Node x l r) = Node x (swap r) (swap l)

