LECTURE 05

Theory and Design of PL (CS 538)
February 05, 2020



DEFINING NEW TYPES



WHY USE CUSTOM TYPES?

e Better describe what programs should “mean”
m |s this integer measuring length, or weight?
= Use the compiler to do these basic checks



SANITIZING INPUT

e [n Haskell: newt ype declaration

newtype CheckedStr
newtype UncheckedStr

Safe String
Unsafe String

e Suppose: have some way to check strings

checkString :: UncheckedStr -> CheckedStr



SANITIZING INPUT

e Compiler makes sure you don't forget to check!

processSateStr :: CheckedStr —-> Output
processSateStr =

mysteryStr :: UncheckedStr

mysterystr =

processSafeStr (checkString mysteryStr) -- OK

processSafeStr (mysteryStr) —— Compiler complains!



WHY USE CUSTOM TYPES?

e Support more richer data
= Not just integers, booleans, and functions
m | |sts, trees, maps, etc.



THREE KEY INGREDIENTS

1. Name of type, and parameters
e Simple: char for character

e Complex: [a] for list of elements of same type

2. Some way to make things of this type
e Package up parts into a data of the new type
e Also called constructors

3. Some way to use things of this type
e Use data packaged inside things of this type
e Also called destructors




EXAMPLE: PRODUCTS



ALSO KNOWN AS TUPLES

e Wrap up several pieces of data into one
e Just one option: must contain all data

ata Pair a b = MkPair a b

e Type variables a and b: can stand for any type

MkPair 1 True) :: Pair Int Bool



USING TUPLES

e Given tuple, pattern match to extract data

fstPalir :: Pair a b -> a
fstPair (MkPair x ) = x
sndPair :: Pair a b -> Db
sndPair (MkPair V) =y

e Note: still need to put the constructor MkPair



TYPES WITH PARAMETERS

e Pair is an example of a parametric type
e Any two typesa andb giveatype Pair a b

e Canrequire parameters to be the same:

data SamePalr a = MkSamePair a a
(MkSamePair 1 3) :: SamePair Int
(MkSamePalr True False) :: SamePair Bool

—-— Not allowed: (MkSamePair 1 False)



FANCIER PRODUCTS: RECORDS

e Sometimes we want to work with large tuples:

data Person = MkPerson

String —— Name

Bool -— Is employed?
Bool —— Is married?
Int —-— Age

String —— Address

e Very annoying (and error-prone) to work with:

getName (MkPerson name ) name

getEmploy (MkPerson emp )

emp




RECORD SYNTAX

e Haskell provides record syntax for these tuples

data Person = MkPerson

{ name :: String —— Name

, employed :: Bool -— Is employed?
, married :: Bool —— Is married?
, age :: Int -— Age

, address :: String —-— Address

}

e Automatically generates accessor functions:

name :: Person -> String
employed :: Person -> Bool



BUILDING RECORDS

e Standard syntax for building a new record:

defaultPerson :: Person
defaultPerson = MkPerson
{ name = "John Doe"
, employed = True
, married = False
, age = 30

, address = "123 Main Street, Anytown, WI"



USING RECORDS

e Standard syntax for updating records:

-— Keep all fields the same, except for name and address:

defaultPerson' = defaultPerson
{ name = "Jane Doe"
, address = "456 Main Street, Anytown, WI }

e Can pattern match on selected fields

getNameAddress :: Person -> (String, String)
getNameAddress (MkPerson { name = n, address = a }) = (n, a)



EXAMPLE: SUMS



ALSO KNOWN AS ENUMS

e Basic idea: choice between different options
e Example: atype Color

data Color = Red | Green | Blue

e Can pack additional data with each option:

data Time = HoursMinutes Int Int | Minutes Int



BUILDING ENUMS

data Time = HoursMinutes Int Int | Minutes Int

e First label in each option is a data constructor
e Two constructors: HoursMinutes and Minutes

e Can make a Time In exactly two ways:

B HoursMinutes 11 59 :: Time

B M1nutes 1800 :: Time




EXTRACTING DATA

e Pattern match: give program to run for each option

whatColorBellPepper :: Color —-> String
whatColorBellPepper Red "It 1s red."
whatColorBellPepper Green "It 1s green!"
"It 1s blue?"

whatColorBellPepper Blue

e Can also match on data inside different options

whatTime :: Time —-> String
(show m) ++ ":" ++ (show h)
(show m) ++ " min. past midnight"

whatTime (HoursMinutes m h)

whatTime (Minutes m)



EXAMPLE: MAYBE




BUILDING MAYBES

e AMaybe alseither nothing, or an a

data Maybe a = Nothing | Just a

e To make something of this type, use constructors

noValue :: Maybe Int
noValue = Nothing

someValue :: Maybe Int
someValue = Just 13



UNWRAPPING MAYBES

e Given a maybe, describe how to handle both cases
e Compiler complainsif Nothing caseisn't handled

printMaybe :: Maybe Int -> String
printMaybe Nothing = "No value here : ("
printMaybe (Just x) = "Got a wvalue: " ++ (show x)



USE: OPTIONAL VALUES

e Contains an actual value, or nothing (is “null”)
e Nothingisusually indicates failure

e For instance: lookup function

findIndex :: (a —-> Bool) -> [a] —-> Maybe Int
—— findIndex p returns (Just 1ndex) 1f element satisfying p
—— findIndex p returns Nothing 1f no element satisfies p



EXAMPLE: EITRER



BUILDING EITHERS

e Either isjust asum with two type parameters:

data Either a b = Left a | Right b

-— Auto-generated: Left :: a —-> Either a b
—-— Auto-generated: Right :: b -> Either a b

1ther a b

L]

e UseLeft orRight tocreatean:



UNWRAPPING EITHERS

e Just like for Mavbe, do a case analysis:

doubleRight :: Either Int Int -> Int

doubleRight (Left x) X
doubleRight (Right v) v o+ v




USE: ERROR-HANDLING

e Either normal value, or an error

e Convention
m Right Is normal case, holds result value
m | eftiserror case, includes error info

safeModulo :: Int —-> Int -> Either String Int
safeModulo m n

| n == 0 = Left "Error: Modulo by zero!"

| n /= 0 = Right (n "mod m)



INDUCTIVE DATATYPES



GENERALIZE A BIT

e All the types we have seen so far are inductive types
e Basic pattern:

= Some type parameters (maybe zero)

= Some number of constructors

= Unwrap values by matching on constructor
e [nductive: data may be of the type being defined!



NATURAL NUMBERS

e Either zero, or one plus another natural number

data Nat = Zero | Succ Nat
—— Succ short for "successor"

e As always, operate by pattern matching on cases

addNats :: Nat -> Nat -> Nat
-— 0 + n'" = n'
addNats Zero n' = n'

-- (1 +n) +n" =1+ (n + n')
addNats (Succ n) n' Succ S addNats n n'



LISTS

e Either empty list, or an element plus another list
e Takes a type parameter a: type of list elements

data List a = Nil | Cons a (List a)

maybeHead :: List a —-> Maybe a
maybeHead Nil = Nothing
maybeHead (Cons x xs) = Just X



BINARY TREES

e Either leaf, or node with data plus two child trees

data Tree a = Leaf | Node a (Tree a) (Tree a)

swap :: Tree a —-> Tree a
swap Leatf Leat
swap (Node x 1 r) Node x (swap r) (swap 1)



