LECTURE 04

Theory and Design of PL (CS 538)
February 3, 2020

LAMBDA CALGULUS
BASICS

SOME TERMINOLOGY

e You may see several different names:
= Programs
= Expressions
= [erms
e For lambda calculus, these all mean the same thing

"RUNNING™ A LAMBDA EXPRESSION

e Given alambda calculus program, how to run it?
1. Figure out where parentheses go
2. Substitute fn argument into fn body
3. Repeat until we reach a value

. FIGURE OUT WHERE PARENTHESES G0

e Function application is left-associative
e Example: e; eo €3 means (€1 €3) €3
s Read: call e; with eg, then with e3
e Not the same: e; (e €3)
m Read: call e with e3, then call e

2. SUBSTITUTE ARGUMENT INTO BODY

e Example: (Ax.e) v where v is a value

e Replace all* X’s in e with v, remove AX.
= Read: call function with argument v
e Example: (Ax.x + 1) 5
= Replace x with 5, remove AX.
m Result: 5 + 1, stepsto 6

3. KEEP SUBSTITUTING UNTIL DONE

1. Order: outside-to-inside
2. Operate on left-most term until it is AX.e

3. Turn to argument (right-most term)
e [f eager evaluation, operate on argument

e [flazy evaluation, substitute argument into e
4. Never substitute “under” lambdas
e Don't substitute for y: Ax.((Ay.e1) x)

LET'S DO AN EXAMPLE

e Start: ((Aa.a) Ab.Ac.Ad.dbc) 12 Ax.Ay.x+y
e = ((((Aa.a) Ab.Ac.Ad.(d b) c) 1) 2) (Ax.Ay.x +y)
. ((Ab.Ac.Ad.(db)c) 1) 2) (Ax.Ay.x +y)

= (
= — ((Ac.Ad.(d 1) ¢) 2) (AxX.Ay.X + V)
» — (Ad.(d 1) 2) (AxAy.x + y)
— (
— (
%

FREE VERSUS BOUND VARIABLES

e Freevariable: introduced by outer A
e Bound variable: not introduced by outer A
e Example:z AX.z + X

= X is a bound variable (under Ax)

= 7 is afree variable (hot under Az)
e When substituting, only replace bound variable

e Example: (Ax.(Ax.x + 1)) S stepstoAx.x + 1

= Inner X bound by the inner AX, not the outer one

SPECIFYING PROGRAM
BEHAVIORS

HELP COMPILER WRITERS

e For real languages: multiple implementations
s C/C++: gcc, clang, icc, compcert, vc++, ...
= Python: CPython, Jython, PyPy, ...
= Ruby: YARYV, JRuby, TruffleRuby, Rubinius, ...
e Should agree on what programs are supposed to do!

DESIGN OPTIMIZATIONS

e Compilers use optimizations to speed up code
m | oops: fission and fusion, unrolling, unswitching
= Common subexpression, dead code elimination
= |nlining and hoisting
= Strength reduction
= Vectorization

e Optimizations shouldn’t affect program behavior!

PROVE PROGRAMS SATISFY GERTAIN
PROPERTIES

e Before we can prove anything about programs, we
first need to formalize what programs do

e Example: equivalence
= WWhich programs are equivalent?
= Which programs aren’t equivalent?

HOW T0 SPECIFY
BEHAVIORS?

PROGRAM SEMANTICS

e |deal goal: describe programs mathematically

= Aiming for a fully precise definition
e But: no mathematical model is perfect

= Programs run on physical machines in real life
e Challenge: which aspects should we model?

MANY APPROACHES

e Denotational semantics

= Translate programs to mathematical functions
e Axiomatic semantics

= Analyze pre-/post-conditions of programs
e Operational semantics

= Model how programs step

Principle: program behavior should be
defined by behavior of its components

OPERATIONAL
SEMANTICS

PROGRAMS MAKE STEPS

e Model how a program is evaluated
e Benefits:
= Closer correspondence with implementation
s General: most programs “step”, in some sense
e Drawbacks:
= A |ot of details, models all the steps
= Overkill if we just care about input/output

VALUES AND EXPRESSIONS

e Programs may or may not be able to step
o Can step: redexes (reducible expresisons)
e Can'’t step:
= Values: valid results
m Stuck terms: invalid results (“runtime errors”)

INLAMBDA CALCULUS

e Values: these things do not step, they are done

val =B | Z | var | A var . expr

e Expressions: these things may step

expr =B | Z

A var . expr | expr expr

add (expr, expr) | sub(expr, expr)
and (expr, expr) | or(expr, expr)
1f expr then expr else expr | ...

e Stuck terms: not values, but can’t step (error)

-

B Cruye

m] + false

HOW T0 DEFINE
OPERATIONAL
SEMANTICS?

WANT TO DEFINE NEW RELATIONS

e R(e, v): “Program e steps to value v

e S(e,e’):“Program e steps to programe’”

e As PL designer: we get to define R and S
= But what does a definition look like?

INFERENCE RULES

e Basicidea: we write down a set of inference rules
e Components of arule

= Above the line: zero-or-more assumptions

= Below the line: one conclusion
e Meaningof arule

= |f top thing(s) hold, then bottom thing holds

= |f no top things: bottom thing holds

EXAMPLE: ISDOUBLE

BIG-STEP SEMANTICS

IDEA: DESCRIBE PROGRAM RESULT

e Useful for language specifications
e Don't describe intermediate steps

e Writee || v if program e evaluates to value v

Language designer defines whene || v

EXAMPLE

HOW T0 APPLY FUNCTIONS?

e Eager evaluation
= Ife; | Ax.€7,and

n |fes lLV,and
w Ifey|x — v| | Vv,
= Then:e; ey | v/

HOW T0 APPLY FUNCTIONS?

e Lazy evaluation
= Ife; |} Ax.e}, and
= Ifey|x — e | v,
» Then:ej ey || v

IN HASKELL?

e Recall tuple and non-terminating functions:

fst (x, y) = X
snd (x, y) =Y
loopForever x = loopForever x —- never terminates

e What if we try to project from a bad tuple?

badFst
badSnd

fst (loopForever 42, 0) + 1 —-- Never returns
snd (loopForever 42, 0) + 1 -- Returns 1!

EAGER EVALUATION

e When passing arguments to function, first evaluate
argument all the way

e Also known as call-by-value (CBV)

e [f argument doesn't terminate, then function call
doesn’t terminate

badFst
badSnd

fst (loopForever 42, 0) + 1 —-- Never returns under CBV

snd (loopForever 42, 0) + 1 —-- Never returns under CBV

LAZY EVALUATION

e Only evaluate arguments when they are needed
o Also known as call-by-name (CBN)
e This is Haskell's evaluation order

badFst
badSnd

fst (loopForever 42, 0) + 1 —-- Never returns under CBN
snd (loopForever 42, 0) + 1 -- Returns 0 under CBN

FUN WITH LAZINESS

e Can write various kinds of infinite data
e Values are computed lazily: only when needed

lotsOfOnes :: [Int]
lotsOfOnes =1 : lotsOfOnes -- [1, 1,
firstOne = head lotsOfOnes —-- Returns 1
onesAndTwos :: [Int] -- [1, 2, 1, 2,
onesAndTwos = x where x = 1 : vy

vy = 2 : X
firstTwo = head $ tail onesAndTwos —- Returns 2
fibonacci :: [Int] -- [1, 1, 2, 3,

fibonacci =1 : 1 : zipWith (+) fibonacci (tail fibonacci)

SMALL-STEP
SEMANTICS

IDEA: DESCRIBE PROGRAM STEPS

e More fine-grained, helpful for implementation
o If e steps to €’ inone step, write:e — €’

o Ifestepstoe’ inzeroor moresteps:e —* ¢’

EXAMPLE

RECURSION

FIXED POINT OPERATION

e |dea: special expression for recursive definitions
e Should allow definition to “make recursive call”
e Fixed point expression: defined in terms of itself

expr = ... | fix var . expr

HOW DOES THIS EVALUATE?

e Infix t. e:
= The variable f represents recursive call

= The body e can make recursive calls via {
e Small-step:

fix f.e — elf — fix f. €

e Big-step:
o Ifelf — fixf.e| | v,
» Then:fixf.e | v

HOW T0 USE ThIS THING?

e Suppose: want to model factorial function:

e We can model as the following expression:

factorial = fix f. An. if n = 0 then 1 else n * (f (n -

TESTING IT OUT

e Evaluating factorial 5:
= — |[An. if n = 0 then 1 else n * ((fix f...) (n — 1))
= — if 5 = 0 then 1 else 5 * ((fixf...) (b — 1))
« % 5 x ((fixf...) 4)
s »>*5%4%x3%2x%(if 0 =0 then 1 else ...)
n 5> 5 %x4x3x2x1 —*120

