LECTURE 04

Theory and Design of PL (CS 538)

February 3, 2020

LAMBDA CALCULUS BASICS

SOME TERMINOLOGY

- You may see several different names:
 - Programs
 - Expressions
 - Terms
- For lambda calculus, these all mean the same thing

"RUNNING" A LAMBDA EXPRESSION

- Given a lambda calculus program, how to run it?
 - 1. Figure out where parentheses go
 - 2. Substitute fn argument into fn body
 - 3. Repeat until we reach a value

1. FIGURE OUT WHERE PARENTHESES GO

- Function application is left-associative
- Example: e_1 e_2 e_3 means $(e_1$ $e_2)$ e_3
 - Read: call e₁ with e₂, then with e₃
- Not the same: e_1 (e_2 e_3)
 - Read: call e₂ with e₃, then call e₁

2. SUBSTITUTE ARGUMENT INTO BODY

- Example: $(\lambda x.e)$ v where v is a value
- Replace all* x's in e with v, remove λx .
 - Read: call function with argument v
- Example: $(\lambda x.x + 1)$ 5
 - Replace x with 5, remove λx .
 - \blacksquare Result: 5+1, steps to 6

3. KEEP SUBSTITUTING UNTIL DONE

- 1. Order: outside-to-inside
- 2. Operate on left-most term until it is $\lambda x.e$
- 3. Turn to argument (right-most term)
 - If eager evaluation, operate on argument
 - If lazy evaluation, substitute argument into e
- 4. Never substitute "under" lambdas
 - Don't substitute for $y: \lambda x.((\lambda y.e_1) x)$

LET'S DO AN EXAMPLE

- = $((((\lambda a.a) \lambda b.\lambda c.\lambda d.(d b) c) 1) 2) (\lambda x.\lambda y.x + y)$
 - $\rightarrow (((\lambda b.\lambda c.\lambda d.(d b) c) 1) 2) (\lambda x.\lambda y.x + y)$
 - $\rightarrow ((\lambda c.\lambda d.(d 1) c) 2) (\lambda x.\lambda y.x + y)$
 - $\lambda \left(\lambda d. (d 1) 2 \right) (\lambda x. \lambda y. x + y)$
 - $\rightarrow ((\lambda x.\lambda y.x + y) 1) 2$
 - $\rightarrow (\lambda y.1 + y) 2$
 - $\blacksquare \to 1 + 2 \to 3$

FREE VERSUS BOUND VARIABLES

- Free variable: introduced by outer λ
- Bound variable: not introduced by outer λ
- Example: $z \lambda x.z + x$
 - \blacksquare x is a bound variable (under λ x)
 - \blacksquare z is a free variable (not under λ z)
- When substituting, only replace bound variable
- Example: $(\lambda x.(\lambda x.x + 1))$ 5 steps to $\lambda x.x + 1$
 - Inner x bound by the inner λx , not the outer one

SPECIFYING PROGRAM BEHAVIORS

HELP COMPILER WRITERS

- For real languages: multiple implementations
 - C/C++: gcc, clang, icc, compcert, vc++, ...
 - Python: CPython, Jython, PyPy, ...
 - Ruby: YARV, JRuby, TruffleRuby, Rubinius, ...
- Should agree on what programs are supposed to do!

DESIGN OPTIMIZATIONS

- Compilers use optimizations to speed up code
 - Loops: fission and fusion, unrolling, unswitching
 - Common subexpression, dead code elimination
 - Inlining and hoisting
 - Strength reduction
 - Vectorization
- Optimizations shouldn't affect program behavior!

PROVE PROGRAMS SATISFY CERTAIN PROPERTIES

- Before we can prove anything about programs, we first need to formalize what programs do
- Example: equivalence
 - Which programs are equivalent?
 - Which programs aren't equivalent?

HOW TO SPECIFY BEHAVIORS?

PROGRAM SEMANTICS

- Ideal goal: describe programs mathematically
 - Aiming for a fully precise definition
- But: no mathematical model is perfect
 - Programs run on physical machines in real life
- Challenge: which aspects should we model?

MANY APPROACHES

- Denotational semantics
 - Translate programs to mathematical functions
- Axiomatic semantics
 - Analyze pre-/post-conditions of programs
- Operational semantics
 - Model how programs step

Principle: program behavior should be defined by behavior of its components

OPERATIONAL SEMANTICS

PROGRAMS MAKE STEPS

- Model how a program is evaluated
- Benefits:
 - Closer correspondence with implementation
 - General: most programs "step", in some sense
- Drawbacks:
 - A lot of details, models all the steps
 - Overkill if we just care about input/output

VALUES AND EXPRESSIONS

- Programs may or may not be able to step
- Can step: redexes (reducible expresisons)
- Can't step:
 - Values: valid results
 - Stuck terms: invalid results ("runtime errors")

IN LAMBDA CALCULUS

• Values: these things do not step, they are done

```
val = B \mid Z \mid var \mid \lambda var. expr
```

• Expressions: these things may step

- Stuck terms: not values, but can't step (error)
 - true 1
 - 1 + false

HOW TO DEFINE OPERATIONAL SEMANTIGS?

WANT TO DEFINE NEW RELATIONS

- R(e, v): "Program e steps to value v"
- S(e, e'): "Program e steps to program e'"
- \bullet As PL designer: we get to define R and S
 - But what does a definition look like?

INFERENCE RULES

- Basic idea: we write down a set of inference rules
- Components of a rule
 - Above the line: zero-or-more assumptions
 - Below the line: one conclusion
- Meaning of a rule
 - If top thing(s) hold, then bottom thing holds
 - If no top things: bottom thing holds

EXAMPLE: ISDOUBLE

BIG-STEP SEMANTICS

IDEA: DESCRIBE PROGRAM RESULT

- Useful for language specifications
- Don't describe intermediate steps
- ullet Write e ψ v if program e evaluates to value v

Language designer defines when e \Downarrow v

EXAMPLE

HOW TO APPLY FUNCTIONS?

- Eager evaluation
 - If $e_1 \Downarrow \lambda x.e_1'$, and
 - lacktriangle If $e_2 \ \psi \ v$, and
 - $\blacksquare \mathsf{lf}\, e_1'[\mathbf{x} \mapsto \mathbf{v}] \Downarrow \mathbf{v}',$
 - $\blacksquare \text{ Then: } e_1 \ e_2 \ \psi \ v'$

HOW TO APPLY FUNCTIONS?

- Lazy evaluation
 - If $e_1 \Downarrow \lambda x.e_1'$, and
 - $\blacksquare \mathsf{lf}\, e_1'[\mathbf{x} \mapsto e_2] \Downarrow \mathbf{v},$
 - \blacksquare Then: $e_1 e_2 \Downarrow v$

IN HASKELL?

Recall tuple and non-terminating functions:

```
fst (x, y) = x

snd(x, y) = y

loopForever x = loopForever x -- never terminates
```

What if we try to project from a bad tuple?

```
badFst = fst (loopForever 42, 0) + 1 -- Never returnsbadSnd = snd (loopForever 42, 0) + 1 -- Returns 1!
```

EAGER EVALUATION

- When passing arguments to function, first evaluate argument all the way
- Also known as call-by-value (CBV)
- If argument doesn't terminate, then function call doesn't terminate

```
badFst = fst (loopForever 42, 0) + 1 -- Never returns under CBV badSnd = snd (loopForever 42, 0) + 1 -- Never returns under CBV
```

LAZY EVALUATION

- Only evaluate arguments when they are needed
- Also known as call-by-name (CBN)
- This is Haskell's evaluation order

```
badFst = fst (loopForever 42, 0) + 1 -- Never returns under CBN badSnd = snd (loopForever 42, 0) + 1 -- Returns 0 under CBN
```

FUN WITH LAZINESS

- Can write various kinds of infinite data
- Values are computed lazily: only when needed

SMALL-STEP SEMANTICS

IDEA: DESCRIBE PROGRAM STEPS

- More fine-grained, helpful for implementation
- If e steps to e' in one step, write: $e \rightarrow e'$
- If e steps to e' in zero or more steps: $e \to^* e'$

EXAMPLE

REGURSION

FIXED POINT OPERATION

- Idea: special expression for recursive definitions
- Should allow definition to "make recursive call"
- Fixed point expression: defined in terms of itself

```
expr = ... | fix var . expr
```

HOW DOES THIS EVALUATE?

- In fix f. e:
 - The variable f represents recursive call
 - The body e can make recursive calls via f
- Small-step:

fix f. e
$$\rightarrow$$
 e[f \mapsto fix f. e]

- Big-step:
 - $\blacksquare \text{ If } e[f \mapsto fix \ f. \ e] \Downarrow v,$
 - Then: fix f. e \ \ v

HOW TO USE THIS THING?

• Suppose: want to model factorial function:

```
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

We can model as the following expression:

factorial = fix f. λn . if n = 0 then 1 else n * (f (n - 1))

TESTING IT OUT

- Evaluating factorial 5:
 - \rightarrow [λn . if n = 0 then 1 else n * ((fix f...) (n 1))
 - $\rightarrow \text{if } 5 = 0 \text{ then } 1 \text{ else } 5 * ((\text{fix } f...) (5 1))$
 - lacksquare \rightarrow * 5 * ((fix f...) 4)

 - $\rightarrow^* 5 * 4 * 3 * 2 * (if 0 = 0 then 1 else ...)$
 - $\blacksquare \rightarrow 5*4*3*2*1 \rightarrow^* 120$