
LECTURE 03
Theory and Design of PL (CS 538)

January 31, 2020

MORE ON HW1

UPDATES
Make sure to compile with -Wall before submitting

If there are warnings in starter code, please �x
Make sure to run hlint before submitting

Don’t need to do all changes; use your judgment

SMALL CONTEST
We will run all solutions on several new puzzles
Fastest solutions get a small prize (not for grade)
Details:

Run on instructional machines
One solution, and �rst N solutions

Will grade solutions for given functions

MORE HIGHER-ORDER

EXAMPLE: APPLICATION
Apply a function to an argument, get result:

Why use this? One use: avoiding parentheses

($) :: (a -> b) -> a -> b
fun $ arg = f arg

plusOne :: Int -> Int

val = plusOne $ plusOne 42
-- SAME AS: val = plusOne (plusOne 42)
-- BUT NOT: val = plusOne plusOne 42

EXAMPLE: COMPOSITION
Chain two functions, get another function:

Example: repeat functions:

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) sndFun fstFun x = sndFun (fstFun x)
-- NOTE: order matters!

doTwice :: (a -> a) -> a -> a
doTwice fun = fun . fun

plusTwo = doTwice plusOne

EXAMPLE: FLIP
Swap arguments of a two-argument function. Type?

How can we implement this function?

flip :: (a -> b -> c) -> b -> a -> c
--- SAME AS: (a -> b -> c) -> (b -> a -> c)

flip f y x = f x y

EXAMPLE: UNTIL
Repeat fn from init until condition holds. Type?

How can we implement this function?

until :: (a -> Bool) -> (a -> a) -> a -> a

until stop f cur
 | stop cur = cur
 | otherwise = until stop f (f cur)

EXAMPLE: CURRYING

MULTIPLE ARGUMENTS
Given two integers, produce integer
First possible type (uncurried):

myBinaryFn :: (Int, Int) -> Int

foo = myBinaryFn (7, 42)

A BETTER TYPE
Given one integer, produce function from int to int
Second possible type (curried):

myBinaryFn' :: Int -> Int -> Int
-- SAME AS: myBinaryFn' :: Int -> (Int -> Int)
-- BUT NOT: myBinaryFn' :: (Int -> Int) -> Int

foo = myBinaryFn' 7 42

PARTIAL APPLICATION
Don’t need to provide all arguments at once:

Only works for curried functions, not uncurried

plus :: Int -> Int -> Int
plus x y = x + y

plusOne :: Int -> Int
plusOne = plus 1 -- SAME AS: plusOne y = 1 + y

plus' :: (Int, Int) -> Int
plus' (x, y) = x + y

plusOne' = plus' ???

CURRY/UNCURRY
From uncurried to curried:

From curried to uncurried:

curry :: ((a, b) -> c) -> (a -> b -> c)
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> ((a, b) -> c)
uncurry f (x, y) = f x y

WHAT IS A VALID
PROGRAM?

A VALID PROGRAM…
Doesn’t crash when you run it
Applies functions to arguments of the right types
Has properly nested parentheses (…), braces {…}
…

BASIC CRITERIA: SYNTAX
Can check statically, without running program
If syntax is wrong, program is de�nitely wrong
If syntax is right, program could still be wrong

WORDS AND PHRASES
Different kinds of words

Constants (0, true), operations (+, -, *)

Variable names (x)

Keywords (if, then, else, let, where)

Compound words (phrases)
Expressions (2*x+1)

If-statements (if b then 3 else 4)

HOW TO SPECIFY
SYNTAX?

GRAMMARS
List of production rules: different kinds of phrases
Terminals written "..." or '...'
Pipe | means or

Each rule ended by semicolon
Example:

digit-0-to-4 = "0" | "1" | "2" | "3" | "4" ;
digit-5-to-9 = "5" | "6" | "7" | "8" | "9" ;
digit = digit-0-to-4 | digit-5-to-9 ;

REPEATING, OPTIONAL
Braces for repetition, zero or more times:

Brackets for option, zero or one times:

EBNF grammars, Extended Backus-Naur Form

num = digit { digit }

signed-num = ["-"] num

BASIC EXAMPLES

BOOLEANS
Begin with Boolean constants:

Then add logical combinations:

bool-cons = "true" | "false" ; (* constants *)

bool-expr = bool-cons (* constants *)
 | "!" bool-expr (* negation *)
 | "(" bool-expr ")" (* paren term *)
 | bool-expr "==" bool-expr (* equals *)
 | bool-expr "&&" bool-expr (* and *)
 | bool-expr "||" bool-expr ; (* or *)

NUMBERS
Integers and arithmetic operations

num-expr = signed-num (* constants *)
 | "-" num-expr (* negate *)
 | "(" num-expr ")" (* paren term *)
 | num-expr "+" num-expr (* add *)
 | num-expr "-" num-expr (* minus *)
 | num-expr "*" num-expr ; (* multiply *)

EXAMPLE: LAMBDA
CALCULUS

WHY A CORE LANGUAGE?
Simple enough to fully model

Remove all unnecessary features
Easier to study without extra noise

Clarify key language similarities/differences

BRIEF HISTORY
Universal model of computation
Equivalent to Turing machines in power
Common ancestor of all functional languages

STARTING POINT
Begin with variable names and constants:

var = "x" | "y" | "z" | ... ;

expr = var (* variables *)
 | bool-cons | num-cons (* base const *)
 | "(" expr ")" ; (* paren expr *)

DEFINING FUNCTIONS

Functions have input variable, body expression

expr = var (* variables *)
 | bool-cons | num-cons (* base const *)
 | "(" expr ")" (* paren expr *)
 | "λ" var "." expr ; (* functions *)

CALLING FUNCTIONS

Call function with argument by separating with space

expr = var (* variables *)
 | bool-cons | num-cons (* base const *)
 | "(" expr ")" (* paren expr *)
 | "λ" var "." expr (* functions *)
 | expr " " expr ; (* application *)

ADD PRIMITIVES AS NEEDED
Adding in some Boolean operations…

…and some other operations

expr = ...
 | expr "==" expr
 | expr "&&" expr
 | expr "||" expr
 | "!" expr ;

expr = ...
 | expr "+" expr
 | expr "*" expr
 | "-" expr
 | "if" expr "then" expr "else" expr ;

EXAMPLE

CONCRETE VERSUS
ABSTRACT SYNTAX

TWO KINDS OF SYNTAXES
Both can be described by grammars
Concrete: string of characters

Source code from a �le
Data sent over a network

Abstract: tree with labeled nodes

CONCRETE IS GOOD, BUT…
Keeps a lot of irrelevant details

Parentheses, spaces, …
Some important features are hard to see

Ambiguity: 1+2*3 is (1+2)*3? or 1+(2*3)?

Where is the scope of variables?

ABSTRACT SYNTAX TREES
Represent program code as a labeled tree
Each node has:

a label (an operation)
some number of child trees (maybe 0)

Different representation of actual code

Code is more than a just list of characters

EXAMPLE

CONCRETE VS. ABSTRACT?
Concrete: closer to what programmers write

Useful when parsing actual programs
Abstract: closer to what a program means

Useful when representing code in compilers
Useful when performing optimizations
Useful when proving things about programs

We will mostly work with abstract syntax

