
LECTURE 02
Theory and Design of PL (CS 538)

January 29, 2020

RECURSION

WHY RECURSION?
Primary way for functional PLs to do iteration
Natural way to repeat functions, no counters
May take a bit of getting used to

SIMPLE, “DIRECT” RECURSION
All functions in Haskell can be recursive

Also works in let-de�nitions

plusN :: Int -> Int
plusN 0 = 0
plusN n = n + plusN (n - 1)

myFun :: Int -> Int
myFun n = let prodN 0 = 0
 prodN 1 = 1
 prodN n = n * prodN (n - 1) in
 42 + prodN n

BAD EXAMPLE: LOOPING
Can write non-terminating functions!
Try not to do this:

loopForever :: Int -> Int
loopForever x = loopForever x
-- loopForever 42 = ???

“ACCUMULATING” RECURSION

TAIL RECURSION
If last step is recursive call, optimized to loop (faster)

In this example: direct is slower than accumulating
Note: this is not always true!

slowSumTo 0 = 0
slowSumTo n = n + slowSumTo (n - 1)
-- After recursive call returns, need to add n

fastSumTo n = helper 0 n
 where helper total 0 = total
 helper total n = helper (total + n) (n - 1)
-- After recursive call returns, can just return

RECURSION EXAMPLES

RECALL: LISTS
Constructing lists, all elements of same type:

myEmptyList = [] -- empty list
myNonEmptyList = 1 : 2 : myEmptyList -- [1, 2]

-- singleton list: list with one element
mySingleton = [42] -- list with just 42

-- cons operation: add an element to the front of a list
(:) :: a -> [a] -> [a]

-- appending lists: glue two lists together
(++) :: [a] -> [a] -> [a]
myAppList = mySingleton ++ myNonEmptyList -- [42, 1, 2]

LENGTH OF A LIST
With direct recursion:

Accumulating recursion:

lengthList :: [a] -> Int
lengthList [] = 0
lengthList (x:xs) = 1 + lengthList xs

lengthList :: [a] -> Int
lengthList as = length' 0 as
 where length' acc [] = acc
 length' acc (x:xs) = length' (acc + 1) xs

PRODUCT OF A LIST
With direct recursion:

Accumulating recursion:

prodList :: [Int] -> Int
prodList [] = 1
prodList (x:xs) = x * prodList xs

prodList :: [Int] -> Int
prodList = prod' 1
 where prod' acc [] = acc
 prod' acc (x:xs) = prod' (x * acc) xs
-- SAME AS: prodList ls = prod' 1 ls ...

CHECKING ALL TRUE/FALSE
Checking if list is all true/false

allTrue :: [Bool] -> Bool
existsTrue :: [Bool] -> Bool

-- Direct recursion
allTrue [] = True
allTrue (x:xs) = x && allTrue xs

-- Accumulating recursion
existsTrue bs = exists' False bs
 where exists' acc [] = acc
 exists' acc (x:xs) = exists' (acc || x) xs

PATTERN: MAPPING
Add 42 to each element of a list of integers (direct)

add42 :: [Int] -> [Int]
add42 [] = []
add42 (x:xs) = (x + 42) : add42 xs

PATTERN: MAPPING
Flip all elements of a list of booleans (accumulating)

flipBool :: [Bool] -> [Bool]
flipBool bs = flip' [] bs
 where flip' acc [] = acc
 flip' acc (x:xs) = flip' (acc ++ [not x]) xs

PATTERN: FILTERING
Keep only even elements (direct)

keepEvens :: [Int] -> [Int]
keepEvens [] = []
keepEvens (x:xs) = if (even x)
 then x : keepEvens xs
 else keepEvens xs

PATTERN: FILTERING
Keep only positive numbers (accumulating)

keepPos :: [Float] -> [Float]
keepPos fs = keep' [] fs
 where keep' acc [] = acc
 keep' acc (x:xs) = if x > 0
 then keep' (acc ++ [x]) xs
 else keep' acc xs

EXAMPLE: SORTING
Sort list of distinct numbers in increasing order

Note: branching, hard to write as accumulating

sortNums :: [Int] -> [Int]
sortNums [] = []
sortNums (x:xs) = lesser ++ [x] ++ greater
 where lesser = sortNums (filter (< x) xs)
 greater = sortNums (filter (> x) xs)

PATTERN: ZIPPING
Pair up two lists into a list of pairs (direct)

Can you de�ne this function in accumulating style?

zip :: [a] -> [b] -> [(a, b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x, y) : zip xs ys

list = [1, 2, 3]
list' = [4, 5, 6]

paired = zip list list'
-- paired = [(1, 4), (2, 5), (3, 6)]

HIGHER-ORDER
FUNCTIONS

“FIRST-CLASS” FUNCTIONS
Functions are like any other expression
Can be passed as arguments to functions
Can be returned from other functions

PATTERN: MAPPING
Apply function to each element of list:

Earlier examples as special case:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

add42 = map (\x -> x + 42)
-- SAME AS: add42 list = map (\x -> x + 42) list

flipBool = map (\x -> not x)
-- SAME AS: flipBool list = map (\x -> not x) list

PATTERN: FILTERING
Keep only list elements satisfying some condition

Earlier examples as special cases

filter :: (a -> Bool) -> [a] -> [a]
filter cond [] = []
filter cond (x:xs) = if (cond x)
 then x : filter cond xs
 else filter cond xs

keepEvens = filter (\x -> even x)
keepPos = filter (\x -> x > 0)

DIRECT RECURSION, AGAIN

Do these look similar? Common pieces:
1. Combining function (add 1, add 42 and cons)
2. Initial value (0, empty list)
3. List to process

lengthList :: [a] -> Int
lengthList [] = 0
lengthList (x:xs) = 1 + lengthList xs

add42 :: [Int] -> [Int]
add42 [] = []
add42 (x:xs) = (x + 42) : add42 xs

PATTERN: FOLDING RIGHT
Direct recursion is an example of a right fold:

a is type of item, b is type of result

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f init [] = init
foldr f init (x:xs) = f x (foldr f init xs)

lengthList as = foldr (_ len -> 1 + len) 0 as
add42 ls = foldr (\x acc -> (x + 42) : acc) [] ls

ACCUMULATING RECURSION, AGAIN

Do these look a bit similar? They should…

prodList :: [Int] -> Int
prodList ls = prod' 1 ls
 where prod' acc [] = acc
 prod' acc (x:xs) = prod' (x * acc) xs

flipBool :: [Bool] -> [Bool]
flipBool bs = flip' [] bs
 where flip' acc [] = acc
 flip' acc (x:xs) = flip' (acc ++ [not x]) xs

PATTERN: FOLDING LEFT
Accumulating recursion is an example of a left fold:

a is type of accumulator/result, b is type of item

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f init [] = init
foldl f init (x:xs) = foldl f (f init x) xs

prodList ls = foldl (\acc x -> x * acc) 1 ls
flipBool bs = foldl (\acc x -> acc ++ [not x]) [] bs

MORE FOLDING
Checking membership of an element

Direct recursion, can use a right fold:

elemOf :: Int -> [Int] -> Bool
elemOf i [] = False
elemOf i (x:xs) = (i == x) || i `elemOf` xs

elemOf' i = foldr (\x acc -> (i == x) || acc) False

MORE FOLDING
Reversing a list of elements

Accumulating recursion: left fold

reverse :: [a] -> [a]
reverse = helper []
 where helper acc [] = acc
 helper acc (x:xs) = helper (x:acc) xs

reverse' = foldl (\acc x -> x : acc) []

