LECTURE 02

Theory and Design of PL (CS 538)
January 29, 2020

RECURSION

WHY RECURSION?

e Primary way for functional PLs to do iteration
e Natural way to repeat functions, no counters
e May take a bit of getting used to

SIMPLE, “DIRECT" RECURSION

e All functions in Haskell can be recursive

:: Int -> Int

O
c
0
Z

0, 10
s
0 0
Z Z
D O
|
D O

e Also works in let-definitions

mykFun :: Int -> Int
myFun n = let prodN 0 = 0
prodN 1 = 1
prodN n = n * prodN (n - 1) 1n

472 + prodN n

BAD EXAMPLE: LOOPING

e Can write non-terminating functions!
e Try not to do this:

loopForever :: Int —-> Int
loopForever x = loopForever X
—— loopForever 42 = 2?2277

"ACCUMULATING™ RECURSION

TAIL RECURSION

o |f |ast stepisrecursive call, optimized to loop (faster)

0

n + slowSumTo (n - 1)
—-— After recursive call returns, need to add n

slowSumTo O
slowSumTo n

fastSumTo n = helper 0
where helper total O total
helper total n helper (total + n) (n - 1)
—-— After recursive call returns, can just return

| |-

e |[n this example: direct is slower than accumulating
= Note: this is not always true!

RECURSION EXAMPLES

RECALL: LISTS

e Constructing lists, all elements of same type:

myEmptyList = [] -— empty 1ist
myNonEmptyList = 1 : 2 : myEmptylList -- [1, 2]

—— singleton l1ist: 1ist with one element
mySingleton = [42] -— 1list with just 42

—— cons operation: add an element to the front of a 1ist
(:) :: a —-> [a] -> [a&a]

—-— appending lists: glue two 1lists together
(++) :: [a] -> [a] —-> [a]
myAppList = mySingleton ++ myNonEmptyList -- [42, 1, 2]

lengthList ::

lengthList
lengthList

lengthList ::

lengthList
where

[a]
[]

(X:X3)

LENGTR OF A LIST

e \With direct recursion:

—-> Int

= 0

= 1 + lengthList xs

e Accumulating recursion:

[a]

length'
length'

-> Int
as = length' 0 as

aCcC
aCC

]

(X :X3)

acc
length'

(acc + 1)

XS

PRODUCT OF A LIST

e \With direct recursion:

prodList :: [Int] -> Int
prodList [] =]
prodList (x:xs) = X * prodList xs

e Accumulating recursion:

prodList :: [Int] -> Int
prodList = prod' 1
where prod' acc [] = acc
prod' acc (x:xs) = prod' (x * acc) Xxs

-— SAME AS: prodList 1s = prod' 1 1s ...

CHECKING ALL TRUE/FALSE

e Checking if list is all true/false

allTrue :: [Bool] —-> Bool
ex1stsTrue :: [Bool] —-> Rool

—— Direct recursion
allTrue [] = True
allTrue (x:xs) = x && allTrue Xs

—-— Accumulating recursion
exlstsTrue bs = exists' False Dbs
where exists' acc [] = acc
exlsts' acc (x:xs) = exists' (acc || x) xs

PATTERN: MAPPING

e Add 42 to each element of a list of integers (direct)

add4?2 :: [Int] -> [Int]
add4d? [] = []
add4”? (x:xs8) = (x + 42) : add4’?2 xs

PATTERN: MAPPING

e Flip all elements of a list of booleans (accumulating)

flipBool :: [Bool] —-> [Bool]
flipBool bs = flip' []
where flip' acc []
flip' acc (x:

acc
flip' (acc ++ [not x]) xs

PATTERN: FILTERING

e Keep only even elements (direct)

keepEvens :: [Int] -> [Int]
keepEvens [] = []
keepEvens (x:xs) = 1f (even Xx)
then x : keepEvens xs

else keepEvens xs

PATTERN: FILTERING

e Keep only positive numbers (accumulating)

keepPos :: [Float] —-> [Float]
keepPos fs = keep' [] £Is
where keep' acc [] = acc
keep' acc (x:xs) = 1f x > 0

then keep' (acc ++ [x]) XS
else keep' acc xs

EXAMPLE: SORTING

e Sort list of distinct numbers in increasing order

-> [Int]
[]

lesser ++ [x] ++ greater

sortNums :: [Int
sortNums []
sortNums (x:xXs)

where lesser sortNums (filter (< x) xs8)

i i =

greater sortNums (filter (> x) xs)

e Note: branching, hard to write as accumulating

PATTERN: ZIPPING

e Pair up two lists into a list of pairs (direct)

zlip :: [a] —-> [b] -> [(a, Db)]

zip [] = [

zip _ [] = [

Zlp (x:xs) (y:ys) = (X, y) : zZl1p XS VS
list = [1, 2, 3]

list' = [4, 5, 0]

palred = z1lp list list'
-—- paired = [(1, 4), (2, 5), (3, 6)]

e Canyou define this function in accumulating style?

HIGHER-ORDER
FUNCTIONS

“FIRST-CLASS™ FUNCTIONS

e Functions are like any other expression
e Can be passed as arguments to functions
e Can bereturned from other functions

PATTERN: MAPPING

e Apply function to each element of list:

map (a —> b) -> [a] —-> [Db]
map £ [] = []
map f (x:xs) = f x map £ xs

e Earlier examples as special case:

add42 = map (\x —-> x + 42)
-— SAME AS: add42 1ist = map (\x —-> x + 42) 1ist

flipBool = map (\x —-> not Xx)
-— SAME AS: flipBool 1list = map (\x -> not x) 1ist

PATTERN: FILTERING

e Keep only list elements satisfying some condition

filter :: (a -> Bool) -> [a] -> [a]
filter cond [] = []
filter cond (x:xs) = 1f (cond Xx)
then x : filter cond xs

else filter cond xs

e Earlier examples as special cases

keepEvens = filter (\x -> even x)
keepPos = filter (\x -> x > 0)

DIRECT RECURSION, AGAIN

lengthList :: [a] -> Int

lengthList [] = 0

lengthList (x:xs) = 1 + lengthList xs
add4?2 :: [Int] -> [Int]

add4?2 [] = []

add4”? (x:xs8) = (x + 42) : add4’?2 xs

e Do these look similar? Common pieces:
1. Combining function (add 1, add 42 and cons)

2. Initial value (0, empty list)
3. List to process

PATTERN: FOLDING RIGRT

e Direct recursion is an example of a right fold:

foldr :: (a -=> b -> b) -> b -> [a] -> Db
foldr £ 1nit []
foldr £ 1nit (x:x8)

init
f x (foldr f 1nit xs)

e o s typeof item, b is type of result

lengthList as = foldr (\ len -> 1 + len

) 0 as
add4?2 1ls = foldr (\x acc -> (x + 42) : acc) []

1s

ACCUMULATING RECURSION, AGAIN

prodList :: [Int] -> Int
prodList 1ls = prod' 1 1s

where prod' acc [] = acc
prod' acc (x:xs) = prod' (x * acc) s
flipBool :: [Bool] -> [Bool]
flipBool bs = flip' [] bs
where flip' acc [] = acc
flip' acc (x:xs) = flip' (acc ++ [not x]) Xxs

e Do these look a bit similar? They should...

PATTERN: FOLDING LEFT

e Accumulating recursion is an example of a left fold:

foldl :: (a -=> b -> a) -> a -> [b] -> a
foldl £ 1nit [] = 1nit
foldl £ 1nit (x:xs8) = foldl £ (f i1nit X) xs

e 5 istype of accumulator/result, b is type of item

foldl (\acc x -> x * acc) 1 1s
foldl (\acc x -> acc ++ [not x]) [] bs

prodList 1s
flipBool bs

MORE FOLDING

e Checking membership of an element

elemOf :: Int -> [Int] -> Bool
elemOf 1 [] = False
elemOf 1 (x:xs8) = (1 == x) || 1 elemOf xs

e Direct recursion, can use aright fold:

elemOf' i = foldr (\x acc -> (1 == x) || acc) False

MORE FOLDING

e Reversing a list of elements

reverse :: [a] —-> [a]
reverse = helper []
where helper acc []
helper acc (x:xs)

aCC

helper (x:acc) xs

e Accumulating recursion: left fold

reverse' = foldl (\acc x -> x : acc) []

