
LECTURE 01
Theory and Design of PL (CS 538)

January 27, 2020

WHY STUDY
PROGRAMMING
LANGUAGES?

PROGRAMMING LANGUAGES ARE
EVERYWHERE!

STANDARD APPLICATIONS
Systems and low-level tasks

C, C++, Assembly, Rust, Go, …
Higher-level/general-purpose

Java, C#, OCaml, Haskell, Lisp, Python, Ruby, …
Web development and mobile apps

Javascript, Swift, Dart, Objective-C, …
Scripting

Bash, Perl, Awk, Sed, …

NOT-SO-STANDARD
Database queries
Networking and distributed systems
Typesetting
Con�guration and build systems
Theorem proving
Graphics and GPUs, hardware and FPGAs
Numerical and scienti�c computing
Parsing and lexing
Blockchain and smart contracts

HOW WE TELL COMPUTERS WHAT TO DO
From human thoughts to precise instructions

Enable computers to help us program
Spot mistakes, perform optimizations, etc.

PL SHAPES HOW WE THINK
Programmers think in terms of language abstractions

Classes, objects, functions, types, …
Fits complex systems into human brains

WHAT ARE PLS FOR?

WRITING PROGRAMS
Small one-off scripts

Automate some boring task
Useful applications

Notetaking app, web server, …
Serious corporate products ($$$)

Google, Facebook, Amazon, Apple, …
Critical infrastructure

Hospitals, power plants, electricity grids, …

REUSING EXISTING CODE
Share code between members of a team
Use built-in standard libraries
Open-source community, Github

PREVENTING ERRORS
At compile-time

Rule out nonsensical programs
Catch common mistakes automatically
Check for security vulnerabilities

Through better design
Make certain kinds of errors impossible
Ensure programmer handles all cases

“BILLION-DOLLAR MISTAKE”

Tony Hoare, on inventing null pointers/references

I call it my billion-dollar mistake […]
This has led to innumerable errors,
vulnerabilities, and system crashes,

which have probably caused a billion
dollars of pain and damage.

ORGANIZING SOFTWARE
Software: most complex human-designed thing, ever
Not limited by laws of physics

If you build a 1000 story skyscraper, it will collapse
Limited by complexity

If you produce enough code, you will run out of
programmers to �x bugs

PLs: �rst line of defense to manage complexity

THERE’S A LOT OF CODE
How much?

https://informationisbeautiful.net/visualizations/million-lines-of-code/

A THEORY OF
PROGRAMMING
LANGUAGES?

A BUNCH OF LANGUAGES?
Many languages sort of “look the same”
Every real language has a ton of quirks

Historical accidents
Speci�c constraints

Essential features of PLs often hard to see

“PROGRAMMING PARADIGMS”?
Popular way of categorizing PLs

Objected-oriented (OO)
Functional (FP)
Imperative
Declarative

Hard to pin down what these paradigms mean
Most languages have features from all paradigms
A programming style, or a kind of language?

YES: COMMON PL FEATURES
Many PLs arrived at the same few concepts

Examples: variables, functions, loops
Analyze the essence of each feature
Understand how different features interact

YES: FORMALIZE LANGUAGES
Study toy models of programming languages

Extremely simpli�ed (not practical)
Focus on just a few, essential features

Formally de�ned using mathematics
Clearest way to think about languages
Possible to prove things about languages
Provides a rigorous foundation to PL

WHAT MAKES A
LANGUAGE POPULAR?

“EASE OF USE/ERGONOMICS”
Depends on things like…

What PLs a programmer is familiar with
A programmer’s mental model of programs
How “readable” programs are
Speci�c details (braces/parentheses, …)

Hard to analyze scienti�cally

SUPPORTING TOOLS
Development tools

IDE, debugger, linter, code formatter, GUI designer
Standard libraries and documentation

Math, data structures, networking, DB, graphics, …
“Toolchain”: compiler, package manager, runtime
Requires a lot of development effort ($$$)

SOCIAL FACTORS
Speci�c niche

iOS apps, scienti�c computing
Community

Reddit, Stack Over�ow, packages on Github
Industrial in�uence

“Language for NVIDIA GPUs”
Reputation and stereotypes

“Real hackers use C”
Advertising and marketing

Tech talks, conferences, charismatic leaders

WHAT MAKES A
LANGUAGE “GOOD”?

SPECIFY WELL-FORMED PROGRAMS
Language should describe:

Which programs are well-formed
Which programs are not well-formed

De�ne what programs look like!

DESCRIBE BEHAVIOR OF PROGRAMS
Language should describe:

How well-formed programs should behave
What are acceptable outputs, and what are not
Which programs are equivalent, and which are not

De�ne what programs should do!

MAKE IT EASY
TO COMBINE PROGRAMS

Should be possible to:
Understand program by looking at individual parts
Put programs together without causing bugs

Crucial for managing complexity
Makes language feel elegant and well-designed

MAKE IT HARD
TO WRITE BAD PROGRAMS

Make some errors impossible
Null pointer, buffer over�ows, forgotten cases, …

Catch errors early, at compile time
Better not to crash during rocket launch

Warn when programmer does something dangerous

COURSE PLAN AND
OVERALL GOALS

HANDS-ON EXPERIENCE
Use cutting-edge programming languages
First half: Haskell

Functional programming
Advanced type system
Tight control of effects

Second half: Rust
Imperative programming
Neat memory-management mechanisms
Fearless concurrency

EXPLORE PL FEATURES
Type systems of all kinds
Typeclasses/traits
Effect systems
Mutable and immutable references
Lifetimes and memory ownership
…

FORMALIZE LANGUAGES
Sprinkled throughout: core lectures

Work with toy languages
De�ne program syntax and grammars
Set up operational semantics
Design type systems

This part: on paper (no programming)

COURSE FORMAT

WE WILL CARE MORE ABOUT:
Learning core Haskell and Rust
Specifying languages precisely
Specifying type systems precisely

WE WILL CARE LESS ABOUT:
Implementations: compilers, JITs, runtimes, …

Would require a whole course to cover properly
Performance (time and space)

Lots of tricks and techniques
Formally proving stuff about programs

Not super dif�cult, but we don’t have time
Experimental language features

Very interesting, but we will steer clear

DETAILS
Assignments

Both programming and written components
Roughly 2-3 weeks per assignment

Midterm exam: in class
Final exam: take home
Communications: ask/answer questions on Piazza

https://pages.cs.wisc.edu/~justhsu/teaching/current/cs53

https://pages.cs.wisc.edu/~justhsu/teaching/current/cs538/

READINGS
On calendar: references for each lecture

RWH: Real World Haskell
LYAH: Learn You a Haskell for Great Good
PFPL: Practical Foundations for PL

Very helpful and recommended, but not required

EXPERIMENT IN PROGRESS
This course was �rst taught last year
Everything is pretty new: format, lectures, HWs
Haskell and Rust both move fast; we will too

BOTTOM LINE
If something is not working, please let us

know ASAP and we will try to �x it.

HOMEWORKS

INSTALLATION
Instructional machines all have Haskell software
GHC and HLint should just work
Don’t waste time �ghting installation errors; ask us

WRITTEN EXERCISES
Type up solutions or scan
Some parts we won’t cover until next week

PROGRAMMING EXERCISES
Check out resources page on course site
You will have to search in the docs

Hayoo/Hoogle: searching by type
GHCi will help you see what your code is doing

COMPILER ERRORS
Strong type system: Compiler will complain, a lot
Languages have type inference

Pro: usually don’t have to write types
Con: harder time reporting error location

SOME ADVICE
Step 1: Don’t panic!
Step 2: Take errors one at a time, in order

No matter how tempting: never jump ahead!
Fixing one error often �xes many others

Step 3: Try to add type annotations
Help compiler narrow down what type you mean

LATE DAY POLICY
You will each have 6 late days total
Can spend at most 2 late days per HW
One day = 24 hours from the due time
Bonus credit for unused late days

HW1 OUT LATER TONIGHT
Due in two weeks
Programming exercises and written exercises
See full instructions on class site

Start as early as you can!

FUNCTIONAL
PROGRAMMING

A BRIEF HISTORY
Based on lambda calculus by Alonzo Church (1930s)
First real language: Lisp by John McCarthy (1950s)
Popularized by many, especially
ML developed by Robin Milner at Edinburgh (1973)
Miranda and Haskell in late 1980s

John Backus

https://www.thocp.net/biographies/papers/backus_turingaward_lecture.pdf

BUILDING BLOCK: FUNCTIONS
A function has two components:

Input: arguments passed to function
Output: result of running function

Functions are �rst class: treated like any other value
Can be passed into other functions
Can be returned from other functions

Combine functions to build new functions

CONTROL “SIDE-EFFECTS”
Pure functions fully described by input/output

Always return same result on �xed input
Avoid hidden state

Counters, local variables, etc.
Carefully manage side-effects

Printing, reading a �le, etc.

Think about programs in isolation

A TASTE OF HASKELL

DECLARING FUNCTIONS

First line: optional type signature/type annotation
This one says: function from Int to Int

Second line: function de�nition/function body

double :: Int -> Int
double n = n + n

CALLING FUNCTIONS
Format: put function name, space(s), argument

myBool = myFun 42 -- Call with 42
-- NOT: myBool = myFun(42)

myBool' = constFun () -- Call with unit

MULTIPLE ARGUMENTS?

Type signature: doublePlus takes two inputs

Function calls: double x and double y

doublePlus :: Int -> Int -> Int
doublePlus x y = double x + double y
-- SAME AS: doublePlus x y = (double x) + (double y)
-- BUT NOT: doublePlus x y = double(x) + double(y)

CASE ANALYSIS
Standard if-then-else:

Cleaner (or for more cases):

doubleIfBig :: Int -> Int
doubleIfBig n = if (n > 100) then n + n else n

doubleIfBig' :: Int -> Int
doubleIfBig' n
 | n > 100 = n + n
 | otherwise = n

ANOTHER WAY TO MATCH
Use a case expression:

listPrinter''' :: [Int] -> String
listPrinter''' l = case l of
 [] -> "Empty list :("
 (x:xs) -> (show x) ++ " and " ++ (show xs)

DECLARING VARIABLES
At the beginning…

…or at the end

tripleSecret :: Int
tripleSecret = let secret = mySecretNum
 other = myOtherNum
 in 3 * secret + other

tripleSecret' :: Int
tripleSecret' = 3 * secret + other
 where secret = mySecretNum
 other = myOtherNum

TUPLES AND LISTS

BUILDING TUPLES
Tuples are pairs/triples/…

myTuple2 :: (Int, Int)
myTuple2 = (7, 42)

myTriple :: (Int, Int, Int)
myTriple = (7, 42, 108)

MORE TUPLES
Tuples can mix and match different types

Empty tuple is unit type, only one possible value

myMixedTuple :: (Int, Int, Bool)
myMixedTuple = (7, 42, false)

emptyTuple :: ()
emptyTuple = ()

WORKING WITH TUPLES
Get �rst or second elements:

fstInt :: (Int, Int) -> Int
fstInt (x, y) = x

sndInt :: (Int, Int) -> Int
sndInt (x, y) = y

-- In standard library:
fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -> b
snd (x, y) = y

WORKING WITH TUPLES
Swap elements of tuple

swapInt :: (Int, Int) -> (Int, Int)
swapInt (x, y) = (y, x)

swap :: (a, b) -> (b, a)
swap (x, y) = (y, x)

LIST OF THINGS OF SAME TYPE
This is a list of four integers:

Lots of operations on lists:

myList :: [Int]
myList = [1, 2, 3, 4]

myList' = 0 : myList -- [0, 1, 2, 3, 4]
myFirstElem = head myList -- 1
myLength = length myList -- 4
myBigList = myList ++ myList -- [1, 2, 3, 4, 1, 2, 3, 4]
doubleSmalls = [2 * x | x <- myList, x < 3] -- [2, 4]

PATTERN MATCHING
De�ne functions on list by case analysis:

Underscore _ matches any value:

listPrinter :: [Int] -> String
listPrinter [] = "Empty list :("
listPrinter (x:xs) = "List: " ++ (show x) ++ " and " ++ (show xs)

listPrinter' :: [Int] -> String
listPrinter' [] = "Empty list :("
listPrinter' _ = "List with something :)"

MORE ABOUT
FUNCTIONS

INPUTS TO OUTPUTS
Same input always leads to same output

No hidden dependence/effects
Think: “functions in math class”

No side effects! This always returns same value:

constFun :: () -> Bool
-- Either always returns True, or always returns False

INFIX FUNCTIONS
Often convenient to write binary functions in�x

Can turn any binary function into in�x operator:

myAppend :: [Int] -> [Int] -> [Int]
myAppend list list' = list ++ list'

myLists = [1, 2] `myAppend` [3, 4] -- = myAppend [1, 2] [3, 4]

-- Symbol function names can be used infix by default
(@@) :: [Int] -> [Int] -> [Int]
list @@ list' = myAppend list list'

myLists' = [1, 2] @@ [3, 4] -- = (@@) [1, 2] [3, 4]

ANONYMOUS FUNCTIONS
Can de�ne function without giving a name
Useful for small, one-off functions

Can take multiple arguments

plusFour = doTwice (\x -> x + 2)
-- \x looks like λx

plus = \x y -> x + y
-- SAME AS: plus = \x -> \y -> x + y
-- SAME AS: plus x = \y -> x + y
-- SAME AS: plus x y = x + y
-- SAME AS: plus = (+)

REMEMBER ENVIRONMENT
What does ext refer to below?

Anonymous function can use outside variables
If myFun called elsewhere, remembers value of ext
This kind of function is also called a closure

ext :: Int
ext = 42

myFun = \arg -> arg + ext

MORE ABOUT
VARIABLES

THINK: DEFINITION/ABBREVIATION
What is the result of the following program?

Answer: 2. Looks like foo was updated…

let foo = 1 in
 let foo = 2 in
 foo

VARIABLES ARE NEVER “UPDATED”
What about the following programs?

Answer: 3. Inner foo has nothing to do with outer foo!

let foo = 1 in
 (let foo = 2 in foo) + foo

let foo = 1 in
 foo + (let foo = 2 in foo)

