LECTURE 01

Theory and Design of PL (CS 538)
January 27,2020

WHY STUDY
PROGRAMMING
LANGUAGES?

PROGRAMMING LANGUAGES ARE
EVERYWHERE!

STANDARD APPLICATIONS

e Systems and low-level tasks
= C, C++, Assembly, Rust, Go, ...
e Higher-level/general-purpose
= Java, C#, OCaml, Haskell, Lisp, Python, Ruby, ...
e \Web development and mobile apps
= Javascript, Swift, Dart, Objective-C, ...
e Scripting
m Bash, Perl, Awk, Sed, ...

NOT-SO-STANDARD

e Database queries

e Networking and distributed systems

e Typesetting

e Configuration and build systems

e Theorem proving

e Graphics and GPUs, hardware and FPGAs
e Numerical and scientific computing

e Parsing and lexing

e Blockchain and smart contracts

HOW WE TELL COMPUTERS WHAT T0 DO

e From human thoughts to precise instructions
= Enable computers to help us program
= Spot mistakes, perform optimizations, etc.

PL SHAPES HOW WE THINK

e Programmers think in terms of language abstractions
m Classes, objects, functions, types, ...
m Fits complex systems into human brains

WHAT ARE PLS FOR?

WRITING PROGRAMS

e Small one-off scripts
= Automate some boring task
e Useful applications
= Notetaking app, web server, ...
e Serious corporate products ($$%)
= Google, Facebook, Amazon, Apple, ...
e Critical infrastructure
m Hospitals, power plants, electricity grids, ...

REUSING EXISTING CODE

e Share code between members of a team
e Use built-in standard libraries
e Open-source community, Github

PREVENTING ERRORS

e At compile-time
m Rule out nonsensical programs
= Catch common mistakes automatically
= Check for security vulnerabilities

e Through better design
= Make certain kinds of errors impossible
= Ensure programmer handles all cases

“BILLION-DOLLAR MISTAKE"

| call it my billion-dollar mistake |[...]
This has led to innumerable errors,
vulnerabilities, and system crashes,
which have probably caused a billion
dollars of pain and damage.

e Tony Hoare, on inventing null pointers/references

ORGANIZING SOFTWARE

e Software: most complex human-designed thing, ever
e Not limited by laws of physics
= |f you build a 1000 story skyscraper, it will collapse
e Limited by complexity
= |f you produce enough code, you will run out of
programmers to fix bugs
e PLs: first line of defense to manage complexity

THERE'S A LOT OF CODE

How much?

https://informationisbeautiful.net/visualizations/million-lines-of-code/

A THEORY OF
PROGRAMMING
LANGUAGES?

A BUNCH OF LANGUAGES?

e Many languages sort of “look the same”
e Every real language has a ton of quirks
= Historical accidents
= Specific constraints
e Essential features of PLs often hard to see

"PROGRAMMING PARADIGMS™?

e Popular way of categorizing PLs
s Objected-oriented (OO)
= Functional (FP)
= |[mperative
= Declarative
e Hard to pin down what these paradigms mean
» Most languages have features from all paradigms
= A programming style, or a kind of language?

YES: COMMON PL FEATURES

e Many PLs arrived at the same few concepts
= Examples: variables, functions, loops

e Analyze the essence of each feature

e Understand how different features interact

YES: FORMALIZE LANGUAGES

e Study toy models of programming languages
s Extremely simplified (not practical)
® Focus on just a few, essential features

e Formally defined using mathematics
= Clearest way to think about languages
= Possible to prove things about languages
= Provides arigorous foundation to PL

WHAT MARES A
LANGUAGE POPULAR?

“EASE OF USE/ERGONOMICS™

e Depends on things like...
= WWhat PLs a programmer is familiar with
= A programmer’s mental model of programs
= How “readable” programs are
m Specific details (braces/parentheses, ...)
e Hard to analyze scientifically

SUPPORTING TOOLS

e Development tools

m |DE, debugger, linter, code formatter, GUI designer
e Standard libraries and documentation

= Math, data structures, networking, DB, graphics, ...
e “Toolchain”: compiler, package manager, runtime
e Requires a lot of development effort ($$$)

SOCIAL FACTORS

e Specific niche
= |[OS apps, scientific computing
e Community
= Reddit, Stack Overflow, packages on Github
e Industrial influence
= “Language for NVIDIA GPUs”
e Reputation and stereotypes
= “Real hackers use C”
e Advertising and marketing
= Tech talks, conferences, charismatic leaders

WHAT MARES A
LANGUAGE “GOOD™?

SPECIFY WELL-FORMED PROGRAMS

e | anguage should describe:
= Which programs are well-formed
= Which programs are not well-formed

Define what programs look like!

DESCRIBE BEHAVIOR OF PROGRAMS

e | anguage should describe:
= How well-formed programs should behave
= \What are acceptable outputs, and what are not
= Which programs are equivalent, and which are not

Define what programs should do!

MARE IT EASY
T0 COMBINE PROGRAMS

e Should be possible to:
= Understand program by looking at individual parts
= Put programs together without causing bugs

e Crucial for managing complexity

e Makes language feel elegant and well-designhed

MARE [T HARD
T0 WRITE BAD PROGRAMS

e Make some errors impossible

= Null pointer, buffer overflows, forgotten cases, ...
e Catch errors early, at compile time

m Better not to crash during rocket launch
e Warn when programmer does something dangerous

COURSE PLAN AND
OVERALL GOALS

HANDS-ON EXPERIENGE

e Use cutting-edge programming languages
e First half: Haskell
= Functional programming
= Advanced type system
= Tight control of effects
e Second half: Rust
= |[mperative programming
= Neat memory-management mechanisms
= Fearless concurrency

EXPLORE PL FEATURES

e Type systems of all kinds

e Typeclasses/traits

e Effect systems

e Mutable and immutable references
e Lifetimes and memory ownership

FORMALIZE LANGUAGES

e Sprinkled throughout: core lectures
= Work with toy languages
= Define program syntax and grammars
= Set up operational semantics
= Design type systems
e This part: on paper (no programming)

COURSE FORMAT

WE WILL CARE MORE ABOUT.

e [earning core Haskell and Rust
e Specifying languages precisely
e Specifying type systems precisely

WE WILL CARE LESS ABOUT:

e Implementations: compilers, JITs, runtimes, ...
= \Would require a whole course to cover properly
e Performance (time and space)
m | ots of tricks and techniques
e Formally proving stuff about programs
= Not super difficult, but we don't have time
e Experimental language features
= Very interesting, but we will steer clear

DETAILS

e Assignments
= Both programming and written components
m Roughly 2-3 weeks per assignment
e Midterm exam: in class
e Final exam: take home
e Communications: ask/answer questions on Piazza

https://pages.cs.wisc.edu/~justhsu/teaching/current/cs5:

https://pages.cs.wisc.edu/~justhsu/teaching/current/cs538/

READINGS

e On calendar: references for each lecture
= RWH: Real World Haskell
= LYAH: Learn You a Haskell for Great Good
= PFPL: Practical Foundations for PL

e Very helpful and recommended, but not required

EXPERIMENT IN PROGRESS

e This course was first taught last year
e Fverything is pretty new: format, lectures, HWs
e Haskell and Rust both move fast; we will too

BOTTOM LINE

If something is not working, please let us
know ASAP and we will try to fix it.

HOMEWORAS

INSTALLATION

e [nstructional machines all have Haskell software
e GHC and HLint should just work
e Don't waste time fighting installation errors; ask us

WRITTEN EXERCISES

e Type up solutions or scan
e Some parts we won't cover until next week

PROGRAMMING EXERCISES

e Check out resources page on course site
e You will have to search in the docs
= Hayoo/Hoogle: searching by type
e GHCiwill help you see what your code is doing

COMPILER ERRORS

e Strong type system: Compiler will complain, a lot
e Languages have type inference

= Pro: usually don't have to write types

= Con: harder time reporting error location

SOME ADVIGE

e Step 1: Don't panic!
e Step 2: Take errors one at a time, in order
= No matter how tempting: never jump ahead!
= Fixing one error often fixes many others
e Step 3: Try to add type annotations
= Help compiler narrow down what type you mean

LATE DAY POLICY

e You will each have 6 late days total

e Canspend at most 2 late days per HW
e Oneday = 24 hours from the due time
e Bonus credit for unused late days

HW10UT LATER TONIGRT

e Due in two weeks
e Programming exercises and written exercises
e See full instructions on class site

Start as early as you can!

FUNCTIONAL
PROGRAMMING

A BRIEF RISTORY

e Based on lambda calculus by Alonzo Church (1930s)
e First real language: Lisp by John McCarthy (1950s)
e Popularized by many, especially John Backus

e ML developed by Robin Milner at Edinburgh (1973)
e Miranda and Haskell in late 1980s

https://www.thocp.net/biographies/papers/backus_turingaward_lecture.pdf

BUILDING BLOCK: FUNCTIONS

e A function has two components:
m |nput: arguments passed to function
= QOutput: result of running function
e Functions are first class: treated like any other value
= Can be passed into other functions
= Can be returned from other functions
e Combine functions to build new functions

CONTROL “SIDE-EFFECTS”

e Pure functions fully described by input/output
= Always return same result on fixed input

e Avoid hidden state
s Counters, local variables, etc.

e Carefully manage side-effects
= Printing, reading a file, etc.

Think about programs in isolation

A TASTE OF HASKELL

DECLARING FUNCTIONS

e First line: optional type signature/type annotation
= This one says: function from Int to Int

e Second line: function definition/function body

CALLING FUNGTIONS

e Format: put function name, space(s), argument

myBool = myFun 42 -— Call with 42
—-— NOT: myBool = myFun (42)

myBool' = constFun () —-- Call with unit

MULTIPLE ARGUMENTS?

doublePlus :: Int -> Int -> Int

doublePlus x y = double x + double vy

-— SAME AS: doublePlus x y = (double x) + (double y)
—— BUT NOT: doublePlus x y = double(x) + double (y)

e Typesignature: doublePlus takes two inputs
e Functioncalls: double xanddouble vy

CASE ANALYSIS

Standard if-then-else:

doubleIfBig :: Int -> Int
doubleIfBig n = 1if (n > 100) then n + n else n

Cleaner (or for more cases):

doubleIfBig' :: Int -> Int
doubleIfBig' n
n > 100 = n + n
otherwise = n

ANOTHER WAY T0 MATCH

Use a case expression:

listPrinter''' :: [Int] -> String
listPrinter''' 1 = case 1 of
[] -> "Empty list : ("
(X:xs) —> (show x) ++ " and " ++ (show xs)

DECLARING VARIABLES

At the beginning...

tripleSecret :: Int
tripleSecret = let secret = mySecretNum
other = myOtherNum
in 3 * secret + other

...or at the end

tripleSecret' :: Int
tripleSecret' = 3 * secret + other
where secret = mySecretNum

other = myOtherNum

TUPLES AND LISTS

BUILDING TUPLES

e Tuples are pairs/triples/...

myTupleZ :: (Int, Int)
myTuple2 = (7, 42)
myTriple :: (Int, Int, Int)

myTriple (7, 42, 108)

MORE TUPLES

e Tuples can mix and match different types

myMixedTuple :: (Int, Int, Bool)
myMixedTuple = (7, 42, false)

e Empty tuple is unit type, only one possible value

emptyTuple :: ()
emptyTuple = ()

WORKING WITH TUPLES

o Get first or second elements:

fstInt :: (Int, Int) -> Int
fstint (x, y) = X
sndInt :: (Int, Int) -> Int
sndInt (x, y) =V

—-— In standard library:

fst :: (a, b) —-> a
fst (x, y) = X
snd :: (a, b) —> Db

snd (x, y) =Y

WORKING WITH TUPLES

e Swap elements of tuple

swapInt :: (Int, Int) —-> (Int, Int)
swaplInt (x, vy) = (y, X)
swap :: (a, b) -> (b, a)

swap (x, v) = (y, X)

LIST OF THINGS OF SAME TYPE

Thisis alist of four integers:

myList [Int]
myList = [1, 2, 3, 4]
Lots of operations on lists:
myList' = 0 : myList -- [0, 1, 2, 3, 4]
myFlrstElem = head myList -— 1
myLength = length myList -— 4
myBigList = myList ++ myList -- [1, 2, 3, 4, 1, 2, 3, 4]

doubleSmalls = [2 * x | x <- mylList, x < 3 | —-- [2, 4]

PATTERN MATCHING

Define functions on list by case analysis:

listPrinter :: [Int] -> String
listPrinter [] = "Empty list : ("
listPrinter (x:xs) = "List: " 4++ (show x) ++ " and " ++ (show xs)

Underscore matches any value:

listPrinter' :: [Int] -> String
listPrinter' [] = "Empty list : ("
listPrinter' = "List with something :)"

MORE ABOUT
FUNCTIONS

INPUTS TO OUTPUTS

e Same input always leads to same output
= No hidden dependence/effects
» Think: “functions in math class”
e No side effects! This always returns same value:

constFun :: () —> Bool
-— Either always returns True, or always returns False

INFIX FUNCTIONS

e Often convenient to write binary functions infix

myAppend :: [Int] -> [Int] -> [Int]
myAppend list list' = list ++ list'

e Canturn any binary function into infix operator:

myLists = [1, 2] myAppend [3, 4] -- = myAppend [1, 2] [3, 4]
—-— Symbol function names can be used 1nfix by default

(@Q) :: [Int] -> [Int] -> [Int]

list @@ list' = myAppend list list'

mYLiStS' — []—/ 2] @@ [3/ 4] - (@@) [l/ 2] [3/ 4]

plusFour = doTwice

—— \x looks l1like Ax

e Can take multiple arguments

plus = \X v -> X + vy

-—- SAME AS:
-— SAME AS:
-— SAME AS:
-—- SAME AS:

plus
plus x
plus x y
plus

ANONYMOUS FUNCTIONS

e Can define function without giving a name
o Useful for small, one-off functions

(\x -> x + 2)

\x > \y —> x + vy

ik?
< v
X
.
<

,.\
+
N—

REMEMBER ENVIRONMENT

e \What does ext refer to below?

ext :: Int
ext = 42

myFun = \arg -> arg + ext

e Anonymous function can use outside variables
e [fmyFun called elsewhere, remembers value of ext

e This kind of function is also called a closure

MORE ABOUT
VARIABLES

THINK: DEFINITION/ABBREVIATION

What is the result of the following program?

foo = 1 in
et foo = 2 1in
foo

let
1

Answer: 2. Looks like foo was updated...

VARIABLES ARE NEVER “UPDATED"

What about the following programs?

foo + (let foo =

2 1in foo)

Answer: 3. Inner :

“ 0o has nothing to do with outer £

oo!

